Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334961550> ?p ?o ?g. }
- W2334961550 abstract "Abstract Recently Haezendonck–Goovaerts (H–G) risk measure has received much attention in actuarial science. Nonparametric inference has been studied by Ahn and Shyamalkumar (2014) and Peng et al. (2015) when the risk measure is defined at a fixed level. In risk management, the level is usually set to be quite near one by regulators. Therefore, especially when the sample size is not large enough, it is useful to treat the level as a function of the sample size, which diverges to one as the sample size goes to infinity. In this paper, we extend the results in Peng et al. (2015) from a fixed level to an intermediate level. Although the proposed maximum empirical likelihood estimator for the H–G risk measure has a different limit for a fixed level and an intermediate level, the proposed empirical likelihood method indeed gives a unified interval estimation for both cases. A simulation study is conducted to examine the finite sample performance of the proposed method." @default.
- W2334961550 created "2016-06-24" @default.
- W2334961550 creator A5035355100 @default.
- W2334961550 creator A5088624127 @default.
- W2334961550 date "2016-05-01" @default.
- W2334961550 modified "2023-09-29" @default.
- W2334961550 title "Inference for intermediate Haezendonck–Goovaerts risk measure" @default.
- W2334961550 cites W1130558516 @default.
- W2334961550 cites W1971930533 @default.
- W2334961550 cites W1974234363 @default.
- W2334961550 cites W1983386258 @default.
- W2334961550 cites W1998687204 @default.
- W2334961550 cites W2000178295 @default.
- W2334961550 cites W2018687962 @default.
- W2334961550 cites W2036162190 @default.
- W2334961550 cites W2038867671 @default.
- W2334961550 cites W2055881735 @default.
- W2334961550 cites W2058345047 @default.
- W2334961550 cites W2062541416 @default.
- W2334961550 cites W2062998801 @default.
- W2334961550 cites W2063908710 @default.
- W2334961550 cites W2078221804 @default.
- W2334961550 cites W2078908384 @default.
- W2334961550 cites W2080864736 @default.
- W2334961550 cites W2172061102 @default.
- W2334961550 cites W3123477142 @default.
- W2334961550 cites W3123571032 @default.
- W2334961550 doi "https://doi.org/10.1016/j.insmatheco.2016.03.015" @default.
- W2334961550 hasPublicationYear "2016" @default.
- W2334961550 type Work @default.
- W2334961550 sameAs 2334961550 @default.
- W2334961550 citedByCount "8" @default.
- W2334961550 countsByYear W23349615502017 @default.
- W2334961550 countsByYear W23349615502018 @default.
- W2334961550 countsByYear W23349615502019 @default.
- W2334961550 countsByYear W23349615502020 @default.
- W2334961550 countsByYear W23349615502021 @default.
- W2334961550 crossrefType "journal-article" @default.
- W2334961550 hasAuthorship W2334961550A5035355100 @default.
- W2334961550 hasAuthorship W2334961550A5088624127 @default.
- W2334961550 hasConcept C102366305 @default.
- W2334961550 hasConcept C105795698 @default.
- W2334961550 hasConcept C106159729 @default.
- W2334961550 hasConcept C124101348 @default.
- W2334961550 hasConcept C129848803 @default.
- W2334961550 hasConcept C134261354 @default.
- W2334961550 hasConcept C134306372 @default.
- W2334961550 hasConcept C149782125 @default.
- W2334961550 hasConcept C151201525 @default.
- W2334961550 hasConcept C154945302 @default.
- W2334961550 hasConcept C162324750 @default.
- W2334961550 hasConcept C185429906 @default.
- W2334961550 hasConcept C185592680 @default.
- W2334961550 hasConcept C198531522 @default.
- W2334961550 hasConcept C2776214188 @default.
- W2334961550 hasConcept C2780009758 @default.
- W2334961550 hasConcept C2780821815 @default.
- W2334961550 hasConcept C2781117939 @default.
- W2334961550 hasConcept C2781472820 @default.
- W2334961550 hasConcept C28826006 @default.
- W2334961550 hasConcept C33923547 @default.
- W2334961550 hasConcept C41008148 @default.
- W2334961550 hasConcept C43617362 @default.
- W2334961550 hasConcept C44249647 @default.
- W2334961550 hasConceptScore W2334961550C102366305 @default.
- W2334961550 hasConceptScore W2334961550C105795698 @default.
- W2334961550 hasConceptScore W2334961550C106159729 @default.
- W2334961550 hasConceptScore W2334961550C124101348 @default.
- W2334961550 hasConceptScore W2334961550C129848803 @default.
- W2334961550 hasConceptScore W2334961550C134261354 @default.
- W2334961550 hasConceptScore W2334961550C134306372 @default.
- W2334961550 hasConceptScore W2334961550C149782125 @default.
- W2334961550 hasConceptScore W2334961550C151201525 @default.
- W2334961550 hasConceptScore W2334961550C154945302 @default.
- W2334961550 hasConceptScore W2334961550C162324750 @default.
- W2334961550 hasConceptScore W2334961550C185429906 @default.
- W2334961550 hasConceptScore W2334961550C185592680 @default.
- W2334961550 hasConceptScore W2334961550C198531522 @default.
- W2334961550 hasConceptScore W2334961550C2776214188 @default.
- W2334961550 hasConceptScore W2334961550C2780009758 @default.
- W2334961550 hasConceptScore W2334961550C2780821815 @default.
- W2334961550 hasConceptScore W2334961550C2781117939 @default.
- W2334961550 hasConceptScore W2334961550C2781472820 @default.
- W2334961550 hasConceptScore W2334961550C28826006 @default.
- W2334961550 hasConceptScore W2334961550C33923547 @default.
- W2334961550 hasConceptScore W2334961550C41008148 @default.
- W2334961550 hasConceptScore W2334961550C43617362 @default.
- W2334961550 hasConceptScore W2334961550C44249647 @default.
- W2334961550 hasFunder F4320306164 @default.
- W2334961550 hasFunder F4320310607 @default.
- W2334961550 hasLocation W23349615501 @default.
- W2334961550 hasOpenAccess W2334961550 @default.
- W2334961550 hasPrimaryLocation W23349615501 @default.
- W2334961550 hasRelatedWork W1130558516 @default.
- W2334961550 hasRelatedWork W1971930533 @default.
- W2334961550 hasRelatedWork W1979321211 @default.
- W2334961550 hasRelatedWork W1998687204 @default.
- W2334961550 hasRelatedWork W2000178295 @default.
- W2334961550 hasRelatedWork W2017208537 @default.
- W2334961550 hasRelatedWork W2021284105 @default.