Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334971295> ?p ?o ?g. }
- W2334971295 endingPage "155" @default.
- W2334971295 startingPage "146" @default.
- W2334971295 abstract "Abstract Ready Mixed Concrete (RMC) suffers from a lack of practical solutions for automatic resource allocation. Under these circumstances, RMC dispatching systems are mostly handled by experts. This paper attempts to introduce a machine learning based method to automatically match experts' decisions in RMC. For this purpose, seven machine learning techniques with their boosted algorithms were selected. A set of attributes was extracted from the collected field data. Eleven metrics were used to assess the performance of the selected techniques using different approaches. Due to concerns about randomness, significant testing was performed to assist in finding the best algorithm for this purpose. Results show that Random-Forest with 85% accuracy outperforms the other selected techniques. One of the most interesting achieved results is related to the computing time. The results show that all the selected algorithms can solve large-scale depot allocations with a very short computing time. This is possibly because a model built by a machine learning algorithm only needs to be tested with new instances, which does not need an extensive computation effort. This provides us with a chance to move toward automation in Ready Mixed Concrete Dispatching Problems (RMCDPs), especially for those RMCs with dynamic environments where resource allocation might need to be quickly recalculated during the RMC process due to changes in the system." @default.
- W2334971295 created "2016-06-24" @default.
- W2334971295 creator A5012107020 @default.
- W2334971295 creator A5015779172 @default.
- W2334971295 creator A5026360989 @default.
- W2334971295 date "2016-08-01" @default.
- W2334971295 modified "2023-09-26" @default.
- W2334971295 title "Matching experts' decisions in concrete delivery dispatching centers by ensemble learning algorithms: Tactical level" @default.
- W2334971295 cites W1605688901 @default.
- W2334971295 cites W1965192970 @default.
- W2334971295 cites W1966177091 @default.
- W2334971295 cites W1968841204 @default.
- W2334971295 cites W1981456061 @default.
- W2334971295 cites W1986883011 @default.
- W2334971295 cites W2003390304 @default.
- W2334971295 cites W2008896880 @default.
- W2334971295 cites W2024791293 @default.
- W2334971295 cites W2039559327 @default.
- W2334971295 cites W2039575502 @default.
- W2334971295 cites W2041213020 @default.
- W2334971295 cites W2042471350 @default.
- W2334971295 cites W2043623472 @default.
- W2334971295 cites W2046727938 @default.
- W2334971295 cites W2049736842 @default.
- W2334971295 cites W2074746789 @default.
- W2334971295 cites W2076633572 @default.
- W2334971295 cites W2081520677 @default.
- W2334971295 cites W2093842799 @default.
- W2334971295 cites W2116593735 @default.
- W2334971295 cites W2117751486 @default.
- W2334971295 cites W2123771606 @default.
- W2334971295 cites W2128420091 @default.
- W2334971295 cites W2129727551 @default.
- W2334971295 cites W2153923102 @default.
- W2334971295 cites W2161001357 @default.
- W2334971295 cites W2167277498 @default.
- W2334971295 cites W2256881455 @default.
- W2334971295 cites W2319644585 @default.
- W2334971295 cites W2572394542 @default.
- W2334971295 cites W2911964244 @default.
- W2334971295 cites W4244238212 @default.
- W2334971295 cites W4255259582 @default.
- W2334971295 cites W4291236916 @default.
- W2334971295 doi "https://doi.org/10.1016/j.autcon.2016.03.007" @default.
- W2334971295 hasPublicationYear "2016" @default.
- W2334971295 type Work @default.
- W2334971295 sameAs 2334971295 @default.
- W2334971295 citedByCount "16" @default.
- W2334971295 countsByYear W23349712952016 @default.
- W2334971295 countsByYear W23349712952017 @default.
- W2334971295 countsByYear W23349712952018 @default.
- W2334971295 countsByYear W23349712952019 @default.
- W2334971295 countsByYear W23349712952020 @default.
- W2334971295 countsByYear W23349712952021 @default.
- W2334971295 countsByYear W23349712952022 @default.
- W2334971295 countsByYear W23349712952023 @default.
- W2334971295 crossrefType "journal-article" @default.
- W2334971295 hasAuthorship W2334971295A5012107020 @default.
- W2334971295 hasAuthorship W2334971295A5015779172 @default.
- W2334971295 hasAuthorship W2334971295A5026360989 @default.
- W2334971295 hasConcept C105795698 @default.
- W2334971295 hasConcept C11413529 @default.
- W2334971295 hasConcept C119857082 @default.
- W2334971295 hasConcept C127413603 @default.
- W2334971295 hasConcept C154945302 @default.
- W2334971295 hasConcept C165064840 @default.
- W2334971295 hasConcept C33923547 @default.
- W2334971295 hasConcept C41008148 @default.
- W2334971295 hasConcept C42475967 @default.
- W2334971295 hasConcept C45942800 @default.
- W2334971295 hasConceptScore W2334971295C105795698 @default.
- W2334971295 hasConceptScore W2334971295C11413529 @default.
- W2334971295 hasConceptScore W2334971295C119857082 @default.
- W2334971295 hasConceptScore W2334971295C127413603 @default.
- W2334971295 hasConceptScore W2334971295C154945302 @default.
- W2334971295 hasConceptScore W2334971295C165064840 @default.
- W2334971295 hasConceptScore W2334971295C33923547 @default.
- W2334971295 hasConceptScore W2334971295C41008148 @default.
- W2334971295 hasConceptScore W2334971295C42475967 @default.
- W2334971295 hasConceptScore W2334971295C45942800 @default.
- W2334971295 hasFunder F4320334704 @default.
- W2334971295 hasLocation W23349712951 @default.
- W2334971295 hasOpenAccess W2334971295 @default.
- W2334971295 hasPrimaryLocation W23349712951 @default.
- W2334971295 hasRelatedWork W3005055299 @default.
- W2334971295 hasRelatedWork W3013699712 @default.
- W2334971295 hasRelatedWork W3167812655 @default.
- W2334971295 hasRelatedWork W4281757034 @default.
- W2334971295 hasRelatedWork W4285046548 @default.
- W2334971295 hasRelatedWork W4285741730 @default.
- W2334971295 hasRelatedWork W4292969247 @default.
- W2334971295 hasRelatedWork W4308112567 @default.
- W2334971295 hasRelatedWork W4311847748 @default.
- W2334971295 hasRelatedWork W4312241010 @default.
- W2334971295 hasVolume "68" @default.
- W2334971295 isParatext "false" @default.
- W2334971295 isRetracted "false" @default.
- W2334971295 magId "2334971295" @default.