Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334995501> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2334995501 abstract "In the investigation of aircraft crashes traditional key elements are the flight recorder data and the voice recorder tracks as well as the inspection of the aircraft wreckage. At times, these elements are not sufficient to allow the investigators to reach definite conclusion relative to cause or set of causes for the failure(s) leading to the crash. FAA rules do not mandate for black box to record deflections of the aircraft control surfaces. Nevertheless, it is clear that these dynamic time histories can potentially provide crucial information toward the discovery of the cause(s) of the crash. In this paper neural network (NN) approach is proposed for the reconstruction of the time histories of the control surfaces deflections. The inputs to the NN are given by the discretized black box data; the NN outputs are the estimates of the control surface deflections which miniIinze the differences between the data of time histories from parallel simulation code and the actual black box data. The approach is iterative in nature; starting from an initial time instant, the signal reconstruction scheme will proceed to the next time instant only when the estimates of the control surfaces deflections at the current instant minimize the differences between the actual and the simulated time histories at the next instant. The results relative to the reconstruction of the control surfaces deflections for three different types of failures are presented and discussed. The results show that the NN approach allows, with success, the reconstruction of the control surface deflections up to non-linear conditions. Symbols a = normal acceleration, g's tly = lateral acceleration, g's h = altitude, m J = cost function k= discrete time index L= lower bound of the modified sigmoid function p= pattern for the neural network input data T = slope of the modified sigmoid function t= time, sec U = upper bound of the modified sigmoid function Vel= forward speed, m/sec y = generic system output 0= surface deflection, rad or deg 8 = Euler pitch angle, rad or deg = Euler bank angle, rad or deg • Associate Professor, AIAA Member t Graduate Student, Research Assistant, AIAA Member 1T=Euler heading angle, rad or deg Subscripts A= aileron c = control surface command E = elevator R= rudder" @default.
- W2334995501 created "2016-06-24" @default.
- W2334995501 creator A5073165378 @default.
- W2334995501 creator A5087091729 @default.
- W2334995501 date "1996-07-29" @default.
- W2334995501 modified "2023-09-27" @default.
- W2334995501 title "Applications of neural networks for signal reconstruction from aircraft crash data" @default.
- W2334995501 cites W1969705022 @default.
- W2334995501 cites W2137983211 @default.
- W2334995501 doi "https://doi.org/10.2514/6.1996-3802" @default.
- W2334995501 hasPublicationYear "1996" @default.
- W2334995501 type Work @default.
- W2334995501 sameAs 2334995501 @default.
- W2334995501 citedByCount "0" @default.
- W2334995501 crossrefType "proceedings-article" @default.
- W2334995501 hasAuthorship W2334995501A5073165378 @default.
- W2334995501 hasAuthorship W2334995501A5087091729 @default.
- W2334995501 hasConcept C121332964 @default.
- W2334995501 hasConcept C154945302 @default.
- W2334995501 hasConcept C177264268 @default.
- W2334995501 hasConcept C183469790 @default.
- W2334995501 hasConcept C199360897 @default.
- W2334995501 hasConcept C26517878 @default.
- W2334995501 hasConcept C2779432360 @default.
- W2334995501 hasConcept C2779843651 @default.
- W2334995501 hasConcept C38652104 @default.
- W2334995501 hasConcept C41008148 @default.
- W2334995501 hasConcept C50644808 @default.
- W2334995501 hasConcept C62520636 @default.
- W2334995501 hasConcept C79403827 @default.
- W2334995501 hasConcept C94966114 @default.
- W2334995501 hasConceptScore W2334995501C121332964 @default.
- W2334995501 hasConceptScore W2334995501C154945302 @default.
- W2334995501 hasConceptScore W2334995501C177264268 @default.
- W2334995501 hasConceptScore W2334995501C183469790 @default.
- W2334995501 hasConceptScore W2334995501C199360897 @default.
- W2334995501 hasConceptScore W2334995501C26517878 @default.
- W2334995501 hasConceptScore W2334995501C2779432360 @default.
- W2334995501 hasConceptScore W2334995501C2779843651 @default.
- W2334995501 hasConceptScore W2334995501C38652104 @default.
- W2334995501 hasConceptScore W2334995501C41008148 @default.
- W2334995501 hasConceptScore W2334995501C50644808 @default.
- W2334995501 hasConceptScore W2334995501C62520636 @default.
- W2334995501 hasConceptScore W2334995501C79403827 @default.
- W2334995501 hasConceptScore W2334995501C94966114 @default.
- W2334995501 hasLocation W23349955011 @default.
- W2334995501 hasOpenAccess W2334995501 @default.
- W2334995501 hasPrimaryLocation W23349955011 @default.
- W2334995501 hasRelatedWork W1850577750 @default.
- W2334995501 hasRelatedWork W1966154870 @default.
- W2334995501 hasRelatedWork W2013628632 @default.
- W2334995501 hasRelatedWork W2095533454 @default.
- W2334995501 hasRelatedWork W2097487084 @default.
- W2334995501 hasRelatedWork W2134279266 @default.
- W2334995501 hasRelatedWork W2334842502 @default.
- W2334995501 hasRelatedWork W2354472922 @default.
- W2334995501 hasRelatedWork W2556582296 @default.
- W2334995501 hasRelatedWork W2886169110 @default.
- W2334995501 hasRelatedWork W2905967739 @default.
- W2334995501 hasRelatedWork W2989652932 @default.
- W2334995501 hasRelatedWork W71827659 @default.
- W2334995501 hasRelatedWork W846910057 @default.
- W2334995501 hasRelatedWork W996592810 @default.
- W2334995501 hasRelatedWork W100080890 @default.
- W2334995501 hasRelatedWork W1655941013 @default.
- W2334995501 hasRelatedWork W2108416546 @default.
- W2334995501 hasRelatedWork W272910343 @default.
- W2334995501 hasRelatedWork W298584021 @default.
- W2334995501 isParatext "false" @default.
- W2334995501 isRetracted "false" @default.
- W2334995501 magId "2334995501" @default.
- W2334995501 workType "article" @default.