Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335116514> ?p ?o ?g. }
- W2335116514 endingPage "8236" @default.
- W2335116514 startingPage "8225" @default.
- W2335116514 abstract "A series of Ni(II) and Pd(II) hydrides supported by PNP and PCP ligands, including iPr2PNP(CH3)PdH (iPr2PNP(CH3) = N(2-PiPr2-4-MeC6H3)2), iPr2PNP(CH3)NiH, iPr2PNP(F)PdH (iPr2PNP(F) = N(2-PiPr2-4-C6H3F)2), CyPhPNPPdH (CyPhPNP = N(2-P(Cy)(Ph)-4-MeC6H3)2), tBu2PCPPdH (tBu2PCP = 2,6-C6H3(CH2PtBu2)2), tBu2PCPNiH, Cy2PCPPdH (Cy2PCP = 2,6-C6H3(CH2PCy2)2), and Cy2PCPNiH, were prepared using literature methods. In addition, the new Ni and Pd hydrides Cy2PSiPMH (M = Ni, Pd; Cy2PSiP = Si(Me)(2-PCy2-C6H4)2) supported by PSiP ligands were synthesized. The analogous metal hydride complexes supported by the Ph2PSiP ligand (Ph2PSiP = Si(Me)(2-PPh2-C6H4)2) could not be prepared. Instead, the Ni(0) and Pd(0) η2-silane complexes Ph2PSiHPM(PPh3) (M = Ni, Pd; Ph2PSiHP = (H)Si(Me)(2-PPh2-C6H4)2), which have been proposed to be in equilibrium with Ph2PSiPMH (M = Ni, Pd) and PPh3, were prepared. Facile carbon dioxide insertion into the metal–hydride bond to form the metal formate complexes tBu2PCPM-OC(O)H (M = Ni, Pd) or Cy2PCPM-OC(O)H (M = Ni, Pd) was observed for PCP-supported species, and a similar reaction was observed for Cy2PSiP-supported hydrides to form Cy2PSiPM-OC(O)H (M = Ni, Pd). No reaction with carbon dioxide was observed for any complexes supported by PNP ligands. The η2-silane complex Ph2PSiHPPd(PPh3) reacted rapidly with carbon dioxide to give Ph2PSiPPd-OC(O)H and PPh3, while the corresponding Ni complex Ph2PSiHPNi(PPh3) did not react with carbon dioxide. DFT calculations indicate that carbon dioxide insertion is thermodynamically favorable for PSiP- and PCP-supported hydrides because the strong trans influence of the anionic carbon donor destabilizes the metal–hydride bond. In contrast, carbon dioxide insertion is thermodynamically unfavorable for the PNP-supported species. In the case of the η2-silane complexes, carbon dioxide insertion is thermodynamically favorable for Pd and unfavorable for Ni. This is because the equilibrium between the metal hydride and PPh3 and the η2-silane complex more strongly favors the metal hydride for Pd than for Ni. In the cases of metal hydrides, the thermodynamic favorability of carbon dioxide insertion can be predicted from the natural bond orbital charge on the hydride. The pathway for carbon dioxide insertion into the metal hydride is concerted and features a four-centered transition state. The energy of the transition state for carbon dioxide insertion decreases as the trans influence of the anionic donor of the pincer ligand increases." @default.
- W2335116514 created "2016-06-24" @default.
- W2335116514 creator A5016727165 @default.
- W2335116514 creator A5062709693 @default.
- W2335116514 creator A5085447771 @default.
- W2335116514 creator A5090193586 @default.
- W2335116514 creator A5091152007 @default.
- W2335116514 date "2012-11-05" @default.
- W2335116514 modified "2023-10-03" @default.
- W2335116514 title "Experimental and Computational Studies of the Reaction of Carbon Dioxide with Pincer-Supported Nickel and Palladium Hydrides" @default.
- W2335116514 cites W1965587829 @default.
- W2335116514 cites W1966869800 @default.
- W2335116514 cites W1973111883 @default.
- W2335116514 cites W1975506590 @default.
- W2335116514 cites W1980008367 @default.
- W2335116514 cites W1980696050 @default.
- W2335116514 cites W1983290112 @default.
- W2335116514 cites W1983923345 @default.
- W2335116514 cites W1984740050 @default.
- W2335116514 cites W1985037036 @default.
- W2335116514 cites W1991109869 @default.
- W2335116514 cites W1991515348 @default.
- W2335116514 cites W1997503806 @default.
- W2335116514 cites W1998780196 @default.
- W2335116514 cites W2000420919 @default.
- W2335116514 cites W2001164482 @default.
- W2335116514 cites W2003135711 @default.
- W2335116514 cites W2006234432 @default.
- W2335116514 cites W2009997593 @default.
- W2335116514 cites W2011042434 @default.
- W2335116514 cites W2017735459 @default.
- W2335116514 cites W2019677629 @default.
- W2335116514 cites W2020561818 @default.
- W2335116514 cites W2023271753 @default.
- W2335116514 cites W2025469282 @default.
- W2335116514 cites W2032633989 @default.
- W2335116514 cites W2040454689 @default.
- W2335116514 cites W2042926180 @default.
- W2335116514 cites W2051469691 @default.
- W2335116514 cites W2055069218 @default.
- W2335116514 cites W2059020082 @default.
- W2335116514 cites W2064761491 @default.
- W2335116514 cites W2065914671 @default.
- W2335116514 cites W2069726836 @default.
- W2335116514 cites W2070286653 @default.
- W2335116514 cites W2078527804 @default.
- W2335116514 cites W2078809665 @default.
- W2335116514 cites W2087081982 @default.
- W2335116514 cites W2087495253 @default.
- W2335116514 cites W2089307567 @default.
- W2335116514 cites W2089809820 @default.
- W2335116514 cites W2091680897 @default.
- W2335116514 cites W2094723902 @default.
- W2335116514 cites W2110659651 @default.
- W2335116514 cites W2115979109 @default.
- W2335116514 cites W2121308900 @default.
- W2335116514 cites W2125461429 @default.
- W2335116514 cites W2131350133 @default.
- W2335116514 cites W2143981217 @default.
- W2335116514 cites W2144947341 @default.
- W2335116514 cites W2148066840 @default.
- W2335116514 cites W2150033622 @default.
- W2335116514 cites W2150645261 @default.
- W2335116514 cites W2153103446 @default.
- W2335116514 cites W2153954387 @default.
- W2335116514 cites W2161435135 @default.
- W2335116514 cites W2312280253 @default.
- W2335116514 cites W2312979728 @default.
- W2335116514 cites W2324462072 @default.
- W2335116514 cites W2332142647 @default.
- W2335116514 cites W2332399007 @default.
- W2335116514 cites W2950392579 @default.
- W2335116514 cites W2951409858 @default.
- W2335116514 doi "https://doi.org/10.1021/om3008597" @default.
- W2335116514 hasPublicationYear "2012" @default.
- W2335116514 type Work @default.
- W2335116514 sameAs 2335116514 @default.
- W2335116514 citedByCount "124" @default.
- W2335116514 countsByYear W23351165142013 @default.
- W2335116514 countsByYear W23351165142014 @default.
- W2335116514 countsByYear W23351165142015 @default.
- W2335116514 countsByYear W23351165142016 @default.
- W2335116514 countsByYear W23351165142017 @default.
- W2335116514 countsByYear W23351165142018 @default.
- W2335116514 countsByYear W23351165142019 @default.
- W2335116514 countsByYear W23351165142020 @default.
- W2335116514 countsByYear W23351165142021 @default.
- W2335116514 countsByYear W23351165142022 @default.
- W2335116514 countsByYear W23351165142023 @default.
- W2335116514 crossrefType "journal-article" @default.
- W2335116514 hasAuthorship W2335116514A5016727165 @default.
- W2335116514 hasAuthorship W2335116514A5062709693 @default.
- W2335116514 hasAuthorship W2335116514A5085447771 @default.
- W2335116514 hasAuthorship W2335116514A5090193586 @default.
- W2335116514 hasAuthorship W2335116514A5091152007 @default.
- W2335116514 hasConcept C116569031 @default.
- W2335116514 hasConcept C155647269 @default.
- W2335116514 hasConcept C161790260 @default.