Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335153288> ?p ?o ?g. }
- W2335153288 endingPage "1191" @default.
- W2335153288 startingPage "1181" @default.
- W2335153288 abstract "The performance of electrochemical energy storage devices (e.g., batteries and electrochemical capacitors) is largely determined by the physicochemical properties of the active electrode materials, such as the thermodynamic potential associated with the charge-storage reaction, ion-storage capacity, and long-term electrochemical stability. In the case of mixed ion/electron-conducting metal oxides that undergo cation-insertion reactions, the presence of cation vacancies in the lattice structure can enhance one or more of these technical parameters without resorting to a drastic change in material composition. Examples of this enhancement include the charge-storage properties of certain cation-deficient oxides such as γ-MnO2 and γ-Fe2O3 relative to their defect-free analogues. The optimal cation-vacancy fraction is both material- and application-dependent because cation vacancies enhance some materials properties at the expense of others, potentially affecting electronic conductivity or thermal stability. Although the advantages of structural cation vacancies have been known since at least the mid-1980s, only a handful of research groups have purposefully integrated cation vacancies into active electrode materials to enhance device performance.Three protocols are available for the incorporation of cation vacancies into transition metal oxides to improve performance in both aqueous and nonaqueous energy storage. Through a processing approach, researchers induce point defects in conventional oxides using traditional solid-state-ionics techniques that treat the oxide under appropriate atmospheric conditions with a driving force such as temperature. In a synthetic approach, substitutional doping of a highly oxidized cation into a metal-oxide framework can significantly increase cation-vacancy content and corresponding charge-storage capacity. In a scaling approach, electrode materials that are expressed in morphologies with high surface areas, such as aerogels, contain more defects because the increased fraction of surface sites favors the formation of cation vacancies.In this Account, we review studies of cation-deficient electrode materials from the literature and our laboratory, focusing on transition metal oxides and the impact cation vacancies have on electrochemical performance. We also discuss the challenges and limitations of these defective structures and their promise as battery materials." @default.
- W2335153288 created "2016-06-24" @default.
- W2335153288 creator A5014747759 @default.
- W2335153288 creator A5090935206 @default.
- W2335153288 creator A5091090212 @default.
- W2335153288 date "2012-05-29" @default.
- W2335153288 modified "2023-10-04" @default.
- W2335153288 title "Something from Nothing: Enhancing Electrochemical Charge Storage with Cation Vacancies" @default.
- W2335153288 cites W1575366268 @default.
- W2335153288 cites W1606879200 @default.
- W2335153288 cites W1607945206 @default.
- W2335153288 cites W1618341146 @default.
- W2335153288 cites W1872051374 @default.
- W2335153288 cites W1961064909 @default.
- W2335153288 cites W1963592381 @default.
- W2335153288 cites W1967243528 @default.
- W2335153288 cites W1967987176 @default.
- W2335153288 cites W1968921320 @default.
- W2335153288 cites W1972748237 @default.
- W2335153288 cites W1972977797 @default.
- W2335153288 cites W1974726514 @default.
- W2335153288 cites W1975689127 @default.
- W2335153288 cites W1984937279 @default.
- W2335153288 cites W1988318443 @default.
- W2335153288 cites W1991677168 @default.
- W2335153288 cites W1991931670 @default.
- W2335153288 cites W1993385169 @default.
- W2335153288 cites W1995213226 @default.
- W2335153288 cites W1996716403 @default.
- W2335153288 cites W2001916302 @default.
- W2335153288 cites W2004512912 @default.
- W2335153288 cites W2005956456 @default.
- W2335153288 cites W2008294721 @default.
- W2335153288 cites W2009355400 @default.
- W2335153288 cites W2009783929 @default.
- W2335153288 cites W2012708277 @default.
- W2335153288 cites W2013308421 @default.
- W2335153288 cites W2019316837 @default.
- W2335153288 cites W2022771024 @default.
- W2335153288 cites W2024097432 @default.
- W2335153288 cites W2024157212 @default.
- W2335153288 cites W2027066878 @default.
- W2335153288 cites W2027182305 @default.
- W2335153288 cites W2028079187 @default.
- W2335153288 cites W2029202486 @default.
- W2335153288 cites W2030545999 @default.
- W2335153288 cites W2031569346 @default.
- W2335153288 cites W2043156741 @default.
- W2335153288 cites W2044651211 @default.
- W2335153288 cites W2044790533 @default.
- W2335153288 cites W2047777443 @default.
- W2335153288 cites W2053102693 @default.
- W2335153288 cites W2053332809 @default.
- W2335153288 cites W2066212832 @default.
- W2335153288 cites W2066746169 @default.
- W2335153288 cites W2072248488 @default.
- W2335153288 cites W2072295859 @default.
- W2335153288 cites W2072394524 @default.
- W2335153288 cites W2079824849 @default.
- W2335153288 cites W2082229651 @default.
- W2335153288 cites W2084475851 @default.
- W2335153288 cites W2089340052 @default.
- W2335153288 cites W2090232780 @default.
- W2335153288 cites W2091875725 @default.
- W2335153288 cites W2093725204 @default.
- W2335153288 cites W2097224253 @default.
- W2335153288 cites W2099679307 @default.
- W2335153288 cites W2100825532 @default.
- W2335153288 cites W2108165585 @default.
- W2335153288 cites W2133130858 @default.
- W2335153288 cites W2136822440 @default.
- W2335153288 cites W2139402501 @default.
- W2335153288 cites W2151046161 @default.
- W2335153288 cites W2333926264 @default.
- W2335153288 cites W387016879 @default.
- W2335153288 doi "https://doi.org/10.1021/ar200238w" @default.
- W2335153288 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22642490" @default.
- W2335153288 hasPublicationYear "2012" @default.
- W2335153288 type Work @default.
- W2335153288 sameAs 2335153288 @default.
- W2335153288 citedByCount "83" @default.
- W2335153288 countsByYear W23351532882013 @default.
- W2335153288 countsByYear W23351532882014 @default.
- W2335153288 countsByYear W23351532882015 @default.
- W2335153288 countsByYear W23351532882016 @default.
- W2335153288 countsByYear W23351532882017 @default.
- W2335153288 countsByYear W23351532882018 @default.
- W2335153288 countsByYear W23351532882019 @default.
- W2335153288 countsByYear W23351532882020 @default.
- W2335153288 countsByYear W23351532882021 @default.
- W2335153288 countsByYear W23351532882022 @default.
- W2335153288 countsByYear W23351532882023 @default.
- W2335153288 crossrefType "journal-article" @default.
- W2335153288 hasAuthorship W2335153288A5014747759 @default.
- W2335153288 hasAuthorship W2335153288A5090935206 @default.
- W2335153288 hasAuthorship W2335153288A5091090212 @default.
- W2335153288 hasConcept C114221277 @default.
- W2335153288 hasConcept C121332964 @default.