Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335305557> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2335305557 endingPage "591" @default.
- W2335305557 startingPage "591" @default.
- W2335305557 abstract "real region and root of unity region display intrinsically different behavior, the most notable example of which is the fact that in the discrete (root of unity) case the relative commutant, which consists of elements of the factor which commute with all of the subfactor, contains only scalar multiples of the identity, while in the continuous (real) case there is a nontrivial relative commutant. This commutant is not there in the algebraic closure of the standard generators, but makes its appearance only in the weak closure. For this reason it is difficult to show the existence of the nontrivial relative commutant [PP86]. Jones' factor forms a representation of the braid group, and the associated Markov trace gives the Jones knot polynomial. Natural generalizations arise by replacing the factor with a quotient of a Hecke algebra. The quotient generates a H,i factor with a Markov trace for the same values of the parameter A, and has a natural subfactor with analogous properties in the discrete and continuous region. Again, no relative commutant is algebraically generated by the standard generators, but it is reasonable to think that there is a relative commutant in the closure in the continuous case (where the closure is taken in the weak topology given by the G.N.S. construction with the Markov trace). That this is true is the principal result of this paper. By imbedding the Hecke algebra quotient inside a much larger algebra, we may express the relative commutant as concrete elements, as well as phrase the question in terms that don't depend on the language of subfactors. We shall think of the Hecke algebra quotient as being a subalgebra of the infinite tensor product of Mr, the algebra of r by r complex matrices, with the Markov trace given by the restriction of a Powers state (the weak closure of the quotient is a von Neumann subalgebra of the weak closure of the tensor product algebra under the G.N.S. construction with this state). The relative commutant consists of the diagonal subalgebra of the first copy of Mr in the tensor product. More generally, the weak closure of the quotient is the fixed point algebra of the modular group" @default.
- W2335305557 created "2016-06-24" @default.
- W2335305557 creator A5007242685 @default.
- W2335305557 date "1994-06-01" @default.
- W2335305557 modified "2023-09-24" @default.
- W2335305557 title "Relative Commutants of Hecke Algebra Subfactors" @default.
- W2335305557 cites W1534734858 @default.
- W2335305557 cites W1557857086 @default.
- W2335305557 cites W1666093761 @default.
- W2335305557 cites W1993569590 @default.
- W2335305557 cites W2015411876 @default.
- W2335305557 cites W566095862 @default.
- W2335305557 cites W584391566 @default.
- W2335305557 doi "https://doi.org/10.2307/2374992" @default.
- W2335305557 hasPublicationYear "1994" @default.
- W2335305557 type Work @default.
- W2335305557 sameAs 2335305557 @default.
- W2335305557 citedByCount "4" @default.
- W2335305557 crossrefType "journal-article" @default.
- W2335305557 hasAuthorship W2335305557A5007242685 @default.
- W2335305557 hasConcept C136119220 @default.
- W2335305557 hasConcept C202444582 @default.
- W2335305557 hasConcept C2781280181 @default.
- W2335305557 hasConcept C33923547 @default.
- W2335305557 hasConceptScore W2335305557C136119220 @default.
- W2335305557 hasConceptScore W2335305557C202444582 @default.
- W2335305557 hasConceptScore W2335305557C2781280181 @default.
- W2335305557 hasConceptScore W2335305557C33923547 @default.
- W2335305557 hasIssue "3" @default.
- W2335305557 hasLocation W23353055571 @default.
- W2335305557 hasOpenAccess W2335305557 @default.
- W2335305557 hasPrimaryLocation W23353055571 @default.
- W2335305557 hasRelatedWork W153730630 @default.
- W2335305557 hasRelatedWork W1994402433 @default.
- W2335305557 hasRelatedWork W2054802601 @default.
- W2335305557 hasRelatedWork W2063829785 @default.
- W2335305557 hasRelatedWork W211388274 @default.
- W2335305557 hasRelatedWork W2327475189 @default.
- W2335305557 hasRelatedWork W2963381608 @default.
- W2335305557 hasRelatedWork W4230273759 @default.
- W2335305557 hasRelatedWork W4287734682 @default.
- W2335305557 hasRelatedWork W4289550797 @default.
- W2335305557 hasVolume "116" @default.
- W2335305557 isParatext "false" @default.
- W2335305557 isRetracted "false" @default.
- W2335305557 magId "2335305557" @default.
- W2335305557 workType "article" @default.