Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335572799> ?p ?o ?g. }
- W2335572799 endingPage "3676" @default.
- W2335572799 startingPage "3666" @default.
- W2335572799 abstract "In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this classical approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from cattle and pigs. For this purpose, the rather noncomprehensive resources of pig and cattle gene and protein terminologies were enriched with orthologue synonyms, integrated in the NER platform, ProMiner, which is successfully used in human genomics domain. Based on the performance tests done, the present system achieved a fair performance with precision 0.64, recall 0.74, and F(1) measure of 0.69 in a test scenario based on cattle literature." @default.
- W2335572799 created "2016-06-24" @default.
- W2335572799 creator A5003139478 @default.
- W2335572799 creator A5007206948 @default.
- W2335572799 creator A5040221274 @default.
- W2335572799 creator A5046176466 @default.
- W2335572799 creator A5048600002 @default.
- W2335572799 creator A5077378114 @default.
- W2335572799 date "2012-10-01" @default.
- W2335572799 modified "2023-10-17" @default.
- W2335572799 title "Text mining in livestock animal science: Introducing the potential of text mining to animal sciences 1" @default.
- W2335572799 cites W2008856488 @default.
- W2335572799 cites W2053154970 @default.
- W2335572799 cites W2082997591 @default.
- W2335572799 cites W2098725845 @default.
- W2335572799 cites W2099844978 @default.
- W2335572799 cites W2101900454 @default.
- W2335572799 cites W2102370826 @default.
- W2335572799 cites W2111727122 @default.
- W2335572799 cites W2112118427 @default.
- W2335572799 cites W2129113459 @default.
- W2335572799 cites W2132784310 @default.
- W2335572799 cites W2154139219 @default.
- W2335572799 cites W2164777277 @default.
- W2335572799 cites W2164947858 @default.
- W2335572799 cites W4213060373 @default.
- W2335572799 doi "https://doi.org/10.2527/jas.2011-4841" @default.
- W2335572799 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22665627" @default.
- W2335572799 hasPublicationYear "2012" @default.
- W2335572799 type Work @default.
- W2335572799 sameAs 2335572799 @default.
- W2335572799 citedByCount "3" @default.
- W2335572799 countsByYear W23355727992014 @default.
- W2335572799 countsByYear W23355727992019 @default.
- W2335572799 countsByYear W23355727992020 @default.
- W2335572799 crossrefType "journal-article" @default.
- W2335572799 hasAuthorship W2335572799A5003139478 @default.
- W2335572799 hasAuthorship W2335572799A5007206948 @default.
- W2335572799 hasAuthorship W2335572799A5040221274 @default.
- W2335572799 hasAuthorship W2335572799A5046176466 @default.
- W2335572799 hasAuthorship W2335572799A5048600002 @default.
- W2335572799 hasAuthorship W2335572799A5077378114 @default.
- W2335572799 hasConcept C111919701 @default.
- W2335572799 hasConcept C120567893 @default.
- W2335572799 hasConcept C134306372 @default.
- W2335572799 hasConcept C151730666 @default.
- W2335572799 hasConcept C154945302 @default.
- W2335572799 hasConcept C162324750 @default.
- W2335572799 hasConcept C165141518 @default.
- W2335572799 hasConcept C187736073 @default.
- W2335572799 hasConcept C195807954 @default.
- W2335572799 hasConcept C202444582 @default.
- W2335572799 hasConcept C204321447 @default.
- W2335572799 hasConcept C23123220 @default.
- W2335572799 hasConcept C2522767166 @default.
- W2335572799 hasConcept C2779135771 @default.
- W2335572799 hasConcept C2780451532 @default.
- W2335572799 hasConcept C2781083858 @default.
- W2335572799 hasConcept C33923547 @default.
- W2335572799 hasConcept C36503486 @default.
- W2335572799 hasConcept C41008148 @default.
- W2335572799 hasConcept C71472368 @default.
- W2335572799 hasConcept C86803240 @default.
- W2335572799 hasConcept C9652623 @default.
- W2335572799 hasConcept C98045186 @default.
- W2335572799 hasConceptScore W2335572799C111919701 @default.
- W2335572799 hasConceptScore W2335572799C120567893 @default.
- W2335572799 hasConceptScore W2335572799C134306372 @default.
- W2335572799 hasConceptScore W2335572799C151730666 @default.
- W2335572799 hasConceptScore W2335572799C154945302 @default.
- W2335572799 hasConceptScore W2335572799C162324750 @default.
- W2335572799 hasConceptScore W2335572799C165141518 @default.
- W2335572799 hasConceptScore W2335572799C187736073 @default.
- W2335572799 hasConceptScore W2335572799C195807954 @default.
- W2335572799 hasConceptScore W2335572799C202444582 @default.
- W2335572799 hasConceptScore W2335572799C204321447 @default.
- W2335572799 hasConceptScore W2335572799C23123220 @default.
- W2335572799 hasConceptScore W2335572799C2522767166 @default.
- W2335572799 hasConceptScore W2335572799C2779135771 @default.
- W2335572799 hasConceptScore W2335572799C2780451532 @default.
- W2335572799 hasConceptScore W2335572799C2781083858 @default.
- W2335572799 hasConceptScore W2335572799C33923547 @default.
- W2335572799 hasConceptScore W2335572799C36503486 @default.
- W2335572799 hasConceptScore W2335572799C41008148 @default.
- W2335572799 hasConceptScore W2335572799C71472368 @default.
- W2335572799 hasConceptScore W2335572799C86803240 @default.
- W2335572799 hasConceptScore W2335572799C9652623 @default.
- W2335572799 hasConceptScore W2335572799C98045186 @default.
- W2335572799 hasIssue "10" @default.
- W2335572799 hasLocation W23355727991 @default.
- W2335572799 hasLocation W23355727992 @default.
- W2335572799 hasOpenAccess W2335572799 @default.
- W2335572799 hasPrimaryLocation W23355727991 @default.
- W2335572799 hasRelatedWork W2040022066 @default.
- W2335572799 hasRelatedWork W2094591616 @default.
- W2335572799 hasRelatedWork W2313813540 @default.
- W2335572799 hasRelatedWork W2335572799 @default.
- W2335572799 hasRelatedWork W3004288456 @default.