Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335708241> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2335708241 endingPage "19" @default.
- W2335708241 startingPage "10" @default.
- W2335708241 abstract "The RWS detect communities regardless the global topological structure.The improved ARWS could detect the dynamic communities adaptively.The ARWS specific to nodes is suitable to the distributed computation.The improved ARWS have a desirable performance in experiments. With the change of lifestyle and interests, the people's social activities have a dynamic changing tendency. Therefore, the static community could not reflect the real activities. For the 'community' in the social network is the aggregate of people's activities, thus the dynamic community could be detected by simulating the individual freewill. The individual tends to get in touch with the closest friends. By that a direction from one node to its closest nodes can be obtained, and the formed directed network could easily find out the communities. It is different from the traditional community detection policies, which only consider the global topological structure of the social network. Accord to the theory above, we designed the RWS (Random Walk Sampling) method to detect the overlapping communities, utilizing the random walk method to find the closest friends for each node. As the topological structure changing, the proposed ARWS (Adaptive Random Walk Sampling) could make the impacted nodes find out the new closest friends and the changed communities adaptively. The ARWS only update the impacted nodes and communities as the dynamic events occurring, while the traditional dynamic community detection methods need to break up and restructure the communities after the topology changing, because the tradition methods are based on the global topological structure. Therefore, the ARWS has a lower cost than the traditional methods. Furthermore, the ARWS focus on the individual, fitting to the decentralized computing framework, such as distributed computation and cloud computing. That is the trend of the artificial intelligence." @default.
- W2335708241 created "2016-06-24" @default.
- W2335708241 creator A5015585843 @default.
- W2335708241 creator A5035209974 @default.
- W2335708241 creator A5075405141 @default.
- W2335708241 date "2016-10-01" @default.
- W2335708241 modified "2023-09-23" @default.
- W2335708241 title "An adaptive random walk sampling method on dynamic community detection" @default.
- W2335708241 cites W1972449691 @default.
- W2335708241 cites W1997887516 @default.
- W2335708241 cites W2039750798 @default.
- W2335708241 cites W2053086433 @default.
- W2335708241 cites W2079065101 @default.
- W2335708241 cites W2089458547 @default.
- W2335708241 cites W2091202730 @default.
- W2335708241 cites W2115155307 @default.
- W2335708241 cites W2120043163 @default.
- W2335708241 cites W2131681506 @default.
- W2335708241 cites W2169015768 @default.
- W2335708241 cites W2291217097 @default.
- W2335708241 doi "https://doi.org/10.1016/j.eswa.2016.03.033" @default.
- W2335708241 hasPublicationYear "2016" @default.
- W2335708241 type Work @default.
- W2335708241 sameAs 2335708241 @default.
- W2335708241 citedByCount "43" @default.
- W2335708241 countsByYear W23357082412016 @default.
- W2335708241 countsByYear W23357082412017 @default.
- W2335708241 countsByYear W23357082412018 @default.
- W2335708241 countsByYear W23357082412019 @default.
- W2335708241 countsByYear W23357082412020 @default.
- W2335708241 countsByYear W23357082412021 @default.
- W2335708241 countsByYear W23357082412022 @default.
- W2335708241 countsByYear W23357082412023 @default.
- W2335708241 crossrefType "journal-article" @default.
- W2335708241 hasAuthorship W2335708241A5015585843 @default.
- W2335708241 hasAuthorship W2335708241A5035209974 @default.
- W2335708241 hasAuthorship W2335708241A5075405141 @default.
- W2335708241 hasConcept C105795698 @default.
- W2335708241 hasConcept C106131492 @default.
- W2335708241 hasConcept C119857082 @default.
- W2335708241 hasConcept C121194460 @default.
- W2335708241 hasConcept C124101348 @default.
- W2335708241 hasConcept C140779682 @default.
- W2335708241 hasConcept C154945302 @default.
- W2335708241 hasConcept C19499675 @default.
- W2335708241 hasConcept C2781395549 @default.
- W2335708241 hasConcept C31972630 @default.
- W2335708241 hasConcept C33923547 @default.
- W2335708241 hasConcept C41008148 @default.
- W2335708241 hasConceptScore W2335708241C105795698 @default.
- W2335708241 hasConceptScore W2335708241C106131492 @default.
- W2335708241 hasConceptScore W2335708241C119857082 @default.
- W2335708241 hasConceptScore W2335708241C121194460 @default.
- W2335708241 hasConceptScore W2335708241C124101348 @default.
- W2335708241 hasConceptScore W2335708241C140779682 @default.
- W2335708241 hasConceptScore W2335708241C154945302 @default.
- W2335708241 hasConceptScore W2335708241C19499675 @default.
- W2335708241 hasConceptScore W2335708241C2781395549 @default.
- W2335708241 hasConceptScore W2335708241C31972630 @default.
- W2335708241 hasConceptScore W2335708241C33923547 @default.
- W2335708241 hasConceptScore W2335708241C41008148 @default.
- W2335708241 hasLocation W23357082411 @default.
- W2335708241 hasOpenAccess W2335708241 @default.
- W2335708241 hasPrimaryLocation W23357082411 @default.
- W2335708241 hasRelatedWork W2339635974 @default.
- W2335708241 hasRelatedWork W2390163610 @default.
- W2335708241 hasRelatedWork W2899673449 @default.
- W2335708241 hasRelatedWork W2961085424 @default.
- W2335708241 hasRelatedWork W3046775127 @default.
- W2335708241 hasRelatedWork W4286629047 @default.
- W2335708241 hasRelatedWork W4298344116 @default.
- W2335708241 hasRelatedWork W4306321456 @default.
- W2335708241 hasRelatedWork W4306674287 @default.
- W2335708241 hasRelatedWork W4224009465 @default.
- W2335708241 hasVolume "58" @default.
- W2335708241 isParatext "false" @default.
- W2335708241 isRetracted "false" @default.
- W2335708241 magId "2335708241" @default.
- W2335708241 workType "article" @default.