Matches in SemOpenAlex for { <https://semopenalex.org/work/W2335916523> ?p ?o ?g. }
- W2335916523 endingPage "52" @default.
- W2335916523 startingPage "42" @default.
- W2335916523 abstract "Fractional flow reserve (FFR) is a functional index quantifying the severity of coronary artery lesions and is clinically obtained using an invasive, catheter-based measurement. Recently, physics-based models have shown great promise in being able to noninvasively estimate FFR from patient-specific anatomical information, e.g., obtained from computed tomography scans of the heart and the coronary arteries. However, these models have high computational demand, limiting their clinical adoption. In this paper, we present a machine-learning-based model for predicting FFR as an alternative to physics-based approaches. The model is trained on a large database of synthetically generated coronary anatomies, where the target values are computed using the physics-based model. The trained model predicts FFR at each point along the centerline of the coronary tree, and its performance was assessed by comparing the predictions against physics-based computations and against invasively measured FFR for 87 patients and 125 lesions in total. Correlation between machine-learning and physics-based predictions was excellent (0.9994, P < 0.001), and no systematic bias was found in Bland-Altman analysis: mean difference was -0.00081 ± 0.0039. Invasive FFR ≤ 0.80 was found in 38 lesions out of 125 and was predicted by the machine-learning algorithm with a sensitivity of 81.6%, a specificity of 83.9%, and an accuracy of 83.2%. The correlation was 0.729 (P < 0.001). Compared with the physics-based computation, average execution time was reduced by more than 80 times, leading to near real-time assessment of FFR. Average execution time went down from 196.3 ± 78.5 s for the CFD model to ∼2.4 ± 0.44 s for the machine-learning model on a workstation with 3.4-GHz Intel i7 8-core processor." @default.
- W2335916523 created "2016-06-24" @default.
- W2335916523 creator A5006236000 @default.
- W2335916523 creator A5010103367 @default.
- W2335916523 creator A5011888340 @default.
- W2335916523 creator A5012751147 @default.
- W2335916523 creator A5039244326 @default.
- W2335916523 creator A5072953795 @default.
- W2335916523 creator A5080475090 @default.
- W2335916523 creator A5086568941 @default.
- W2335916523 creator A5090703682 @default.
- W2335916523 date "2016-04-14" @default.
- W2335916523 modified "2023-10-16" @default.
- W2335916523 title "A machine-learning approach for computation of fractional flow reserve from coronary computed tomography" @default.
- W2335916523 cites W123601357 @default.
- W2335916523 cites W127494906 @default.
- W2335916523 cites W1514831989 @default.
- W2335916523 cites W1540562167 @default.
- W2335916523 cites W1579760457 @default.
- W2335916523 cites W1663973292 @default.
- W2335916523 cites W1890236620 @default.
- W2335916523 cites W1943997547 @default.
- W2335916523 cites W1971714921 @default.
- W2335916523 cites W1981386994 @default.
- W2335916523 cites W1996269087 @default.
- W2335916523 cites W2000361177 @default.
- W2335916523 cites W2007412473 @default.
- W2335916523 cites W2008442962 @default.
- W2335916523 cites W2016603709 @default.
- W2335916523 cites W2025752073 @default.
- W2335916523 cites W2034914869 @default.
- W2335916523 cites W2040113746 @default.
- W2335916523 cites W2046115776 @default.
- W2335916523 cites W2046322851 @default.
- W2335916523 cites W2064003233 @default.
- W2335916523 cites W2065554972 @default.
- W2335916523 cites W2072128103 @default.
- W2335916523 cites W2084768640 @default.
- W2335916523 cites W2088053327 @default.
- W2335916523 cites W2088439050 @default.
- W2335916523 cites W2088695600 @default.
- W2335916523 cites W2095680098 @default.
- W2335916523 cites W2097663931 @default.
- W2335916523 cites W2101689475 @default.
- W2335916523 cites W2102410507 @default.
- W2335916523 cites W2107661763 @default.
- W2335916523 cites W2108449984 @default.
- W2335916523 cites W2115416118 @default.
- W2335916523 cites W2118810625 @default.
- W2335916523 cites W2122016897 @default.
- W2335916523 cites W2124659021 @default.
- W2335916523 cites W2125453893 @default.
- W2335916523 cites W2125643834 @default.
- W2335916523 cites W2127649313 @default.
- W2335916523 cites W2133924558 @default.
- W2335916523 cites W2141408670 @default.
- W2335916523 cites W2141692613 @default.
- W2335916523 cites W2147823720 @default.
- W2335916523 cites W2148958558 @default.
- W2335916523 cites W2150086052 @default.
- W2335916523 cites W2168258489 @default.
- W2335916523 cites W2168781425 @default.
- W2335916523 cites W2193491470 @default.
- W2335916523 cites W2202429743 @default.
- W2335916523 cites W2255526723 @default.
- W2335916523 cites W2276422413 @default.
- W2335916523 cites W2299220943 @default.
- W2335916523 cites W2320707747 @default.
- W2335916523 cites W2339207678 @default.
- W2335916523 cites W2504405420 @default.
- W2335916523 cites W2546566703 @default.
- W2335916523 cites W2899303960 @default.
- W2335916523 cites W42615294 @default.
- W2335916523 cites W2006916590 @default.
- W2335916523 doi "https://doi.org/10.1152/japplphysiol.00752.2015" @default.
- W2335916523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27079692" @default.
- W2335916523 hasPublicationYear "2016" @default.
- W2335916523 type Work @default.
- W2335916523 sameAs 2335916523 @default.
- W2335916523 citedByCount "271" @default.
- W2335916523 countsByYear W23359165232016 @default.
- W2335916523 countsByYear W23359165232017 @default.
- W2335916523 countsByYear W23359165232018 @default.
- W2335916523 countsByYear W23359165232019 @default.
- W2335916523 countsByYear W23359165232020 @default.
- W2335916523 countsByYear W23359165232021 @default.
- W2335916523 countsByYear W23359165232022 @default.
- W2335916523 countsByYear W23359165232023 @default.
- W2335916523 crossrefType "journal-article" @default.
- W2335916523 hasAuthorship W2335916523A5006236000 @default.
- W2335916523 hasAuthorship W2335916523A5010103367 @default.
- W2335916523 hasAuthorship W2335916523A5011888340 @default.
- W2335916523 hasAuthorship W2335916523A5012751147 @default.
- W2335916523 hasAuthorship W2335916523A5039244326 @default.
- W2335916523 hasAuthorship W2335916523A5072953795 @default.
- W2335916523 hasAuthorship W2335916523A5080475090 @default.
- W2335916523 hasAuthorship W2335916523A5086568941 @default.
- W2335916523 hasAuthorship W2335916523A5090703682 @default.