Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336200034> ?p ?o ?g. }
- W2336200034 endingPage "895" @default.
- W2336200034 startingPage "874" @default.
- W2336200034 abstract "An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values.This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme." @default.
- W2336200034 created "2016-06-24" @default.
- W2336200034 creator A5036958855 @default.
- W2336200034 creator A5040191388 @default.
- W2336200034 creator A5085484547 @default.
- W2336200034 date "2016-04-22" @default.
- W2336200034 modified "2023-09-30" @default.
- W2336200034 title "A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada" @default.
- W2336200034 cites W1824241068 @default.
- W2336200034 cites W1920122307 @default.
- W2336200034 cites W1922715195 @default.
- W2336200034 cites W1968414728 @default.
- W2336200034 cites W1970413676 @default.
- W2336200034 cites W1973342551 @default.
- W2336200034 cites W1986434119 @default.
- W2336200034 cites W1993599733 @default.
- W2336200034 cites W2000809920 @default.
- W2336200034 cites W2004431879 @default.
- W2336200034 cites W2015892211 @default.
- W2336200034 cites W2035975905 @default.
- W2336200034 cites W2066455064 @default.
- W2336200034 cites W2081655984 @default.
- W2336200034 cites W2092220788 @default.
- W2336200034 cites W2095278437 @default.
- W2336200034 cites W2096195489 @default.
- W2336200034 cites W2100234835 @default.
- W2336200034 cites W2101981609 @default.
- W2336200034 cites W2107466340 @default.
- W2336200034 cites W2113686646 @default.
- W2336200034 cites W2115839736 @default.
- W2336200034 cites W2121734782 @default.
- W2336200034 cites W2131226867 @default.
- W2336200034 cites W2141481102 @default.
- W2336200034 cites W2150927990 @default.
- W2336200034 cites W2164062029 @default.
- W2336200034 cites W2170838091 @default.
- W2336200034 cites W2172819965 @default.
- W2336200034 cites W2178586426 @default.
- W2336200034 cites W2181531051 @default.
- W2336200034 cites W2224515999 @default.
- W2336200034 cites W4214559674 @default.
- W2336200034 cites W4242599385 @default.
- W2336200034 cites W4248310817 @default.
- W2336200034 cites W4300234074 @default.
- W2336200034 doi "https://doi.org/10.1080/10962247.2016.1177620" @default.
- W2336200034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27104336" @default.
- W2336200034 hasPublicationYear "2016" @default.
- W2336200034 type Work @default.
- W2336200034 sameAs 2336200034 @default.
- W2336200034 citedByCount "17" @default.
- W2336200034 countsByYear W23362000342017 @default.
- W2336200034 countsByYear W23362000342018 @default.
- W2336200034 countsByYear W23362000342019 @default.
- W2336200034 countsByYear W23362000342020 @default.
- W2336200034 countsByYear W23362000342021 @default.
- W2336200034 countsByYear W23362000342022 @default.
- W2336200034 countsByYear W23362000342023 @default.
- W2336200034 crossrefType "journal-article" @default.
- W2336200034 hasAuthorship W2336200034A5036958855 @default.
- W2336200034 hasAuthorship W2336200034A5040191388 @default.
- W2336200034 hasAuthorship W2336200034A5085484547 @default.
- W2336200034 hasBestOaLocation W23362000341 @default.
- W2336200034 hasConcept C105795698 @default.
- W2336200034 hasConcept C117220453 @default.
- W2336200034 hasConcept C121955636 @default.
- W2336200034 hasConcept C144133560 @default.
- W2336200034 hasConcept C150060386 @default.
- W2336200034 hasConcept C162324750 @default.
- W2336200034 hasConcept C187736073 @default.
- W2336200034 hasConcept C196083921 @default.
- W2336200034 hasConcept C205649164 @default.
- W2336200034 hasConcept C2524010 @default.
- W2336200034 hasConcept C2778755073 @default.
- W2336200034 hasConcept C33923547 @default.
- W2336200034 hasConcept C41008148 @default.
- W2336200034 hasConcept C58640448 @default.
- W2336200034 hasConcept C96250715 @default.
- W2336200034 hasConceptScore W2336200034C105795698 @default.
- W2336200034 hasConceptScore W2336200034C117220453 @default.
- W2336200034 hasConceptScore W2336200034C121955636 @default.
- W2336200034 hasConceptScore W2336200034C144133560 @default.
- W2336200034 hasConceptScore W2336200034C150060386 @default.
- W2336200034 hasConceptScore W2336200034C162324750 @default.
- W2336200034 hasConceptScore W2336200034C187736073 @default.
- W2336200034 hasConceptScore W2336200034C196083921 @default.
- W2336200034 hasConceptScore W2336200034C205649164 @default.
- W2336200034 hasConceptScore W2336200034C2524010 @default.
- W2336200034 hasConceptScore W2336200034C2778755073 @default.
- W2336200034 hasConceptScore W2336200034C33923547 @default.
- W2336200034 hasConceptScore W2336200034C41008148 @default.
- W2336200034 hasConceptScore W2336200034C58640448 @default.
- W2336200034 hasConceptScore W2336200034C96250715 @default.
- W2336200034 hasIssue "9" @default.
- W2336200034 hasLocation W23362000341 @default.
- W2336200034 hasLocation W23362000342 @default.
- W2336200034 hasOpenAccess W2336200034 @default.
- W2336200034 hasPrimaryLocation W23362000341 @default.
- W2336200034 hasRelatedWork W1988032185 @default.