Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336207313> ?p ?o ?g. }
- W2336207313 abstract "In the context of drug discovery, drug target interactions (DTIs) can be predicted based on observed topological features of a semantic network across the chemical and biological space. In a semantic network, the types of the nodes and links are different. In order to take into account the heterogeneity of the semantic network, meta-path-based topological patterns were investigated for link prediction. Supervised machine learning models were constructed based on meta-path topological features of an enriched semantic network, which was derived from Chem2Bio2RDF, and was expanded by adding compound and protein similarity neighboring links obtained from the PubChem databases. The additional semantic links significantly improved the predictive performance of the supervised learning models. The binary classification model built upon the enriched feature space using the Random Forest algorithm significantly outperformed an existing semantic link prediction algorithm, Semantic Link Association Prediction (SLAP), to predict unknown links between compounds and protein targets in an evolving network. In addition to link prediction, Random Forest also has an intrinsic feature ranking algorithm, which can be used to select the important topological features that contribute to link prediction. The proposed framework has been demonstrated as a powerful alternative to SLAP in order to predict DTIs using the semantic network that integrates chemical, pharmacological, genomic, biological, functional, and biomedical information into a unified framework. It offers the flexibility to enrich the feature space by using different normalization processes on the topological features, and it can perform model construction and feature selection at the same time." @default.
- W2336207313 created "2016-06-24" @default.
- W2336207313 creator A5015494748 @default.
- W2336207313 creator A5025213473 @default.
- W2336207313 creator A5047170063 @default.
- W2336207313 creator A5056816429 @default.
- W2336207313 creator A5067483347 @default.
- W2336207313 creator A5074623262 @default.
- W2336207313 date "2016-04-12" @default.
- W2336207313 modified "2023-10-16" @default.
- W2336207313 title "Predicting drug target interactions using meta-path-based semantic network analysis" @default.
- W2336207313 cites W103049419 @default.
- W2336207313 cites W1852306145 @default.
- W2336207313 cites W1982545168 @default.
- W2336207313 cites W1984084871 @default.
- W2336207313 cites W1991919884 @default.
- W2336207313 cites W2012442165 @default.
- W2336207313 cites W2017102965 @default.
- W2336207313 cites W2019543926 @default.
- W2336207313 cites W2040620807 @default.
- W2336207313 cites W2042110087 @default.
- W2336207313 cites W2048384644 @default.
- W2336207313 cites W2063149926 @default.
- W2336207313 cites W2074192927 @default.
- W2336207313 cites W2075897300 @default.
- W2336207313 cites W2080642200 @default.
- W2336207313 cites W2095054612 @default.
- W2336207313 cites W2096560421 @default.
- W2336207313 cites W2111076982 @default.
- W2336207313 cites W2115786648 @default.
- W2336207313 cites W2116238734 @default.
- W2336207313 cites W2126954455 @default.
- W2336207313 cites W2127553917 @default.
- W2336207313 cites W2139516171 @default.
- W2336207313 cites W2143392414 @default.
- W2336207313 cites W2177317049 @default.
- W2336207313 cites W2398999308 @default.
- W2336207313 cites W2911964244 @default.
- W2336207313 cites W4232932184 @default.
- W2336207313 doi "https://doi.org/10.1186/s12859-016-1005-x" @default.
- W2336207313 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4830032" @default.
- W2336207313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27071755" @default.
- W2336207313 hasPublicationYear "2016" @default.
- W2336207313 type Work @default.
- W2336207313 sameAs 2336207313 @default.
- W2336207313 citedByCount "98" @default.
- W2336207313 countsByYear W23362073132016 @default.
- W2336207313 countsByYear W23362073132017 @default.
- W2336207313 countsByYear W23362073132018 @default.
- W2336207313 countsByYear W23362073132019 @default.
- W2336207313 countsByYear W23362073132020 @default.
- W2336207313 countsByYear W23362073132021 @default.
- W2336207313 countsByYear W23362073132022 @default.
- W2336207313 countsByYear W23362073132023 @default.
- W2336207313 crossrefType "journal-article" @default.
- W2336207313 hasAuthorship W2336207313A5015494748 @default.
- W2336207313 hasAuthorship W2336207313A5025213473 @default.
- W2336207313 hasAuthorship W2336207313A5047170063 @default.
- W2336207313 hasAuthorship W2336207313A5056816429 @default.
- W2336207313 hasAuthorship W2336207313A5067483347 @default.
- W2336207313 hasAuthorship W2336207313A5074623262 @default.
- W2336207313 hasBestOaLocation W23362073131 @default.
- W2336207313 hasConcept C119857082 @default.
- W2336207313 hasConcept C124101348 @default.
- W2336207313 hasConcept C130318100 @default.
- W2336207313 hasConcept C138885662 @default.
- W2336207313 hasConcept C148483581 @default.
- W2336207313 hasConcept C151730666 @default.
- W2336207313 hasConcept C154945302 @default.
- W2336207313 hasConcept C169258074 @default.
- W2336207313 hasConcept C2776401178 @default.
- W2336207313 hasConcept C2779343474 @default.
- W2336207313 hasConcept C28225019 @default.
- W2336207313 hasConcept C41008148 @default.
- W2336207313 hasConcept C41895202 @default.
- W2336207313 hasConcept C60644358 @default.
- W2336207313 hasConcept C74187038 @default.
- W2336207313 hasConcept C85407183 @default.
- W2336207313 hasConcept C86803240 @default.
- W2336207313 hasConcept C99726746 @default.
- W2336207313 hasConceptScore W2336207313C119857082 @default.
- W2336207313 hasConceptScore W2336207313C124101348 @default.
- W2336207313 hasConceptScore W2336207313C130318100 @default.
- W2336207313 hasConceptScore W2336207313C138885662 @default.
- W2336207313 hasConceptScore W2336207313C148483581 @default.
- W2336207313 hasConceptScore W2336207313C151730666 @default.
- W2336207313 hasConceptScore W2336207313C154945302 @default.
- W2336207313 hasConceptScore W2336207313C169258074 @default.
- W2336207313 hasConceptScore W2336207313C2776401178 @default.
- W2336207313 hasConceptScore W2336207313C2779343474 @default.
- W2336207313 hasConceptScore W2336207313C28225019 @default.
- W2336207313 hasConceptScore W2336207313C41008148 @default.
- W2336207313 hasConceptScore W2336207313C41895202 @default.
- W2336207313 hasConceptScore W2336207313C60644358 @default.
- W2336207313 hasConceptScore W2336207313C74187038 @default.
- W2336207313 hasConceptScore W2336207313C85407183 @default.
- W2336207313 hasConceptScore W2336207313C86803240 @default.
- W2336207313 hasConceptScore W2336207313C99726746 @default.
- W2336207313 hasIssue "1" @default.
- W2336207313 hasLocation W23362073131 @default.