Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336407639> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2336407639 endingPage "7" @default.
- W2336407639 startingPage "7" @default.
- W2336407639 abstract "In the simulation programs that used to estimate the power of the organic Rankine cycle; high error rates may have occurred due to accepting ideal or near-ideal behaviour differ from the actual behaviour of system components. Predictions made via artificial neural networks may be more close to actual results in the system which is of non-linear behaviour. In this study, network was trained by evaporator waste heat input- output temperatures and mass flow rate, cooling fluid input- output temperatures and mass flow rate taken from an experimental organic Rankine cycle. The power prediction was made with trained network and then the experimental and prediction results of the 10 kW organic Rankine cycle was compared. At the end of the study, the values obtained from artificial neural network were compared with experimental data and correlation coefficient which shows performance of network has calculated to be 0.99124. The prediction success of network was also checked via performing different test data input to the network." @default.
- W2336407639 created "2016-06-24" @default.
- W2336407639 creator A5021066686 @default.
- W2336407639 creator A5027210214 @default.
- W2336407639 creator A5039152830 @default.
- W2336407639 creator A5078612400 @default.
- W2336407639 date "2016-03-01" @default.
- W2336407639 modified "2023-09-26" @default.
- W2336407639 title "DENEYSEL BİR ORGANİK RANKİNE ÇEVRİMİNDE YAPAY SİNİR AĞLARI (YSA) YARDIMIYLA GÜÇ TAHMİNİ" @default.
- W2336407639 cites W1586335931 @default.
- W2336407639 cites W1965667065 @default.
- W2336407639 cites W1988161187 @default.
- W2336407639 cites W1993761604 @default.
- W2336407639 cites W1996282894 @default.
- W2336407639 cites W2011666252 @default.
- W2336407639 cites W2022674109 @default.
- W2336407639 cites W2063240737 @default.
- W2336407639 cites W2080061349 @default.
- W2336407639 cites W2188416679 @default.
- W2336407639 doi "https://doi.org/10.15317/scitech.2016116091" @default.
- W2336407639 hasPublicationYear "2016" @default.
- W2336407639 type Work @default.
- W2336407639 sameAs 2336407639 @default.
- W2336407639 citedByCount "11" @default.
- W2336407639 countsByYear W23364076392019 @default.
- W2336407639 countsByYear W23364076392020 @default.
- W2336407639 countsByYear W23364076392023 @default.
- W2336407639 crossrefType "journal-article" @default.
- W2336407639 hasAuthorship W2336407639A5021066686 @default.
- W2336407639 hasAuthorship W2336407639A5027210214 @default.
- W2336407639 hasAuthorship W2336407639A5039152830 @default.
- W2336407639 hasAuthorship W2336407639A5078612400 @default.
- W2336407639 hasBestOaLocation W23364076391 @default.
- W2336407639 hasConcept C121332964 @default.
- W2336407639 hasConcept C192562407 @default.
- W2336407639 hasConceptScore W2336407639C121332964 @default.
- W2336407639 hasConceptScore W2336407639C192562407 @default.
- W2336407639 hasIssue "1" @default.
- W2336407639 hasLocation W23364076391 @default.
- W2336407639 hasLocation W23364076392 @default.
- W2336407639 hasOpenAccess W2336407639 @default.
- W2336407639 hasPrimaryLocation W23364076391 @default.
- W2336407639 hasRelatedWork W1536502753 @default.
- W2336407639 hasRelatedWork W2899084033 @default.
- W2336407639 hasRelatedWork W2902782467 @default.
- W2336407639 hasRelatedWork W2935759653 @default.
- W2336407639 hasRelatedWork W3105167352 @default.
- W2336407639 hasRelatedWork W54078636 @default.
- W2336407639 hasRelatedWork W1501425562 @default.
- W2336407639 hasRelatedWork W2298861036 @default.
- W2336407639 hasRelatedWork W2954470139 @default.
- W2336407639 hasRelatedWork W3084825885 @default.
- W2336407639 hasVolume "4" @default.
- W2336407639 isParatext "false" @default.
- W2336407639 isRetracted "false" @default.
- W2336407639 magId "2336407639" @default.
- W2336407639 workType "article" @default.