Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336589871> ?p ?o ?g. }
- W2336589871 endingPage "2907" @default.
- W2336589871 startingPage "2896" @default.
- W2336589871 abstract "The state-of-the-art performance for object detection has been significantly improved over the past two years. Besides the introduction of powerful deep neural networks such as GoogleNet and VGG, novel object detection frameworks such as R-CNN and its successors, Fast R-CNN and Faster R-CNN, play an essential role in improving the state-of-the-art. Despite their effectiveness on still images, those frameworks are not specifically designed for object detection from videos. Temporal and contextual information of videos are not fully investigated and utilized. In this work, we propose a deep learning framework that incorporates temporal and contextual information from tubelets obtained in videos, which dramatically improves the baseline performance of existing still-image detection frameworks when they are applied to videos. It is called T-CNN, i.e. tubelets with convolutional neueral networks. The proposed framework won the recently introduced object-detection-from-video (VID) task with provided data in the ImageNet Large-Scale Visual Recognition Challenge 2015 (ILSVRC2015)." @default.
- W2336589871 created "2016-06-24" @default.
- W2336589871 creator A5008929416 @default.
- W2336589871 creator A5036688125 @default.
- W2336589871 creator A5054033403 @default.
- W2336589871 creator A5054518730 @default.
- W2336589871 creator A5056053058 @default.
- W2336589871 creator A5060379760 @default.
- W2336589871 creator A5064357053 @default.
- W2336589871 creator A5065073978 @default.
- W2336589871 creator A5075452279 @default.
- W2336589871 creator A5079410647 @default.
- W2336589871 creator A5087818121 @default.
- W2336589871 date "2018-10-01" @default.
- W2336589871 modified "2023-09-29" @default.
- W2336589871 title "T-CNN: Tubelets With Convolutional Neural Networks for Object Detection From Videos" @default.
- W2336589871 cites W1536680647 @default.
- W2336589871 cites W1559046793 @default.
- W2336589871 cites W1727982597 @default.
- W2336589871 cites W1896395893 @default.
- W2336589871 cites W1903029394 @default.
- W2336589871 cites W1915599933 @default.
- W2336589871 cites W1932624639 @default.
- W2336589871 cites W1937954682 @default.
- W2336589871 cites W1952794764 @default.
- W2336589871 cites W1960289438 @default.
- W2336589871 cites W1973054923 @default.
- W2336589871 cites W1996140089 @default.
- W2336589871 cites W2051588547 @default.
- W2336589871 cites W2068730032 @default.
- W2336589871 cites W2071625890 @default.
- W2336589871 cites W2088049833 @default.
- W2336589871 cites W2097117768 @default.
- W2336589871 cites W2102605133 @default.
- W2336589871 cites W2108598243 @default.
- W2336589871 cites W2113708607 @default.
- W2336589871 cites W2123099218 @default.
- W2336589871 cites W2136243427 @default.
- W2336589871 cites W2164638948 @default.
- W2336589871 cites W2171909552 @default.
- W2336589871 cites W2194775991 @default.
- W2336589871 cites W2200178803 @default.
- W2336589871 cites W2211629196 @default.
- W2336589871 cites W2463113024 @default.
- W2336589871 cites W2471138382 @default.
- W2336589871 cites W2519205375 @default.
- W2336589871 cites W2569778727 @default.
- W2336589871 cites W2963037989 @default.
- W2336589871 cites W2963418361 @default.
- W2336589871 cites W3100591638 @default.
- W2336589871 cites W3100935401 @default.
- W2336589871 cites W3106250896 @default.
- W2336589871 cites W7746136 @default.
- W2336589871 cites W95926497 @default.
- W2336589871 doi "https://doi.org/10.1109/tcsvt.2017.2736553" @default.
- W2336589871 hasPublicationYear "2018" @default.
- W2336589871 type Work @default.
- W2336589871 sameAs 2336589871 @default.
- W2336589871 citedByCount "327" @default.
- W2336589871 countsByYear W23365898712016 @default.
- W2336589871 countsByYear W23365898712017 @default.
- W2336589871 countsByYear W23365898712018 @default.
- W2336589871 countsByYear W23365898712019 @default.
- W2336589871 countsByYear W23365898712020 @default.
- W2336589871 countsByYear W23365898712021 @default.
- W2336589871 countsByYear W23365898712022 @default.
- W2336589871 countsByYear W23365898712023 @default.
- W2336589871 crossrefType "journal-article" @default.
- W2336589871 hasAuthorship W2336589871A5008929416 @default.
- W2336589871 hasAuthorship W2336589871A5036688125 @default.
- W2336589871 hasAuthorship W2336589871A5054033403 @default.
- W2336589871 hasAuthorship W2336589871A5054518730 @default.
- W2336589871 hasAuthorship W2336589871A5056053058 @default.
- W2336589871 hasAuthorship W2336589871A5060379760 @default.
- W2336589871 hasAuthorship W2336589871A5064357053 @default.
- W2336589871 hasAuthorship W2336589871A5065073978 @default.
- W2336589871 hasAuthorship W2336589871A5075452279 @default.
- W2336589871 hasAuthorship W2336589871A5079410647 @default.
- W2336589871 hasAuthorship W2336589871A5087818121 @default.
- W2336589871 hasBestOaLocation W23365898712 @default.
- W2336589871 hasConcept C108583219 @default.
- W2336589871 hasConcept C153180895 @default.
- W2336589871 hasConcept C154945302 @default.
- W2336589871 hasConcept C162324750 @default.
- W2336589871 hasConcept C182521987 @default.
- W2336589871 hasConcept C187736073 @default.
- W2336589871 hasConcept C2776151529 @default.
- W2336589871 hasConcept C2780451532 @default.
- W2336589871 hasConcept C2781238097 @default.
- W2336589871 hasConcept C31510193 @default.
- W2336589871 hasConcept C31972630 @default.
- W2336589871 hasConcept C41008148 @default.
- W2336589871 hasConcept C4641261 @default.
- W2336589871 hasConcept C52622490 @default.
- W2336589871 hasConcept C81363708 @default.
- W2336589871 hasConceptScore W2336589871C108583219 @default.
- W2336589871 hasConceptScore W2336589871C153180895 @default.
- W2336589871 hasConceptScore W2336589871C154945302 @default.