Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336749190> ?p ?o ?g. }
- W2336749190 abstract "In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayermultilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayermultilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices. Semiconducting transition metal dichalcogenides (TMDCs) with a layered crystal structure exhibit unique electrical 1,2 and optical properties 3–5 . TMDCs provide opportunities in exploring new device concepts given their atomic level flatness, and ability to form van der Waals (vdW) heterostructures with strong interlayer coupling 6–8 . For instance, vdW heterobilayers of MoS2/WSe2 have been recently reported to exhibit spatially direct light absorption but spatially indirect light emission, representing a highly intriguing material property 9,10 . Here, we explore the optoelectronic properties of lateral “hetero”-junctions formed on a single crystal of MoS2 of varying thickness (i.e., number of layers). As a result of the quantum confinement effect 11 , when the thickness of a MoS2 crystal is scaled down to a monolayer the optical band gap increases from 1.29 eV (indirect) to 1.85 eV (direct) 12,13 . The change in the band structure and the electron affinity of MoS 2 with layer number opens up the path to the formation of atomically sharp heterostructures, not by changing composition but rather by changing layer thickness 14 . We experimentally examine the surface potential of this thickness modulated heterojunction by using Kelvin probe force microscopy (KPFM). We further use scanning photocurrent microscopy (SPCM) to probe the photoresponse of the junction. A large photocurrent response is observed at the monolayer/ multilayer junction interface which confirms the presence of a strong built-in electric field at the inter face. Device modeling is used in parallel to experiments to understand the underlying mechanism of the observed photocurrents and the band-alignments at the junction interface, suggesting the formation of a type-I heterojunction. SPCM has been previously used to study the photoresponse of metal contacted MoS2 transistors, where the channel thickness for MoS2 was uniform throughout the device 15,16 . The results have shown that the photoresponse is primarily driven by the metal/MoS2 Schottky contacts and photothermoelectric effect 16 . In distinct contrast to previous studies, we observe that the peak photoresponse is spatially located at the MoS2 monolayer/multilayer junction for our lateral heterojunctions and not at the metal contacts." @default.
- W2336749190 created "2016-06-24" @default.
- W2336749190 creator A5017214008 @default.
- W2336749190 creator A5032541535 @default.
- W2336749190 creator A5038446954 @default.
- W2336749190 creator A5073568595 @default.
- W2336749190 creator A5083239479 @default.
- W2336749190 date "2015-01-01" @default.
- W2336749190 modified "2023-09-27" @default.
- W2336749190 title "MoS 2 Heterojunctions by Thickness" @default.
- W2336749190 cites W1491885026 @default.
- W2336749190 cites W1964296075 @default.
- W2336749190 cites W1964418013 @default.
- W2336749190 cites W1969314684 @default.
- W2336749190 cites W1970138328 @default.
- W2336749190 cites W1976743384 @default.
- W2336749190 cites W1978905540 @default.
- W2336749190 cites W1979890291 @default.
- W2336749190 cites W1981264689 @default.
- W2336749190 cites W1984080703 @default.
- W2336749190 cites W1990230218 @default.
- W2336749190 cites W1990621151 @default.
- W2336749190 cites W2001787394 @default.
- W2336749190 cites W2017871657 @default.
- W2336749190 cites W2021994802 @default.
- W2336749190 cites W2023333002 @default.
- W2336749190 cites W2037969399 @default.
- W2336749190 cites W2045065560 @default.
- W2336749190 cites W2048701234 @default.
- W2336749190 cites W2057570315 @default.
- W2336749190 cites W2073321070 @default.
- W2336749190 cites W2080174132 @default.
- W2336749190 cites W2092044679 @default.
- W2336749190 cites W2093467103 @default.
- W2336749190 cites W2108086987 @default.
- W2336749190 cites W2139492972 @default.
- W2336749190 cites W2140677129 @default.
- W2336749190 cites W2141563387 @default.
- W2336749190 cites W2164952642 @default.
- W2336749190 cites W2314688895 @default.
- W2336749190 cites W2316411092 @default.
- W2336749190 cites W2320783575 @default.
- W2336749190 cites W2321730225 @default.
- W2336749190 cites W2327288759 @default.
- W2336749190 cites W2555344454 @default.
- W2336749190 cites W3097979502 @default.
- W2336749190 cites W3105652220 @default.
- W2336749190 hasPublicationYear "2015" @default.
- W2336749190 type Work @default.
- W2336749190 sameAs 2336749190 @default.
- W2336749190 citedByCount "0" @default.
- W2336749190 crossrefType "journal-article" @default.
- W2336749190 hasAuthorship W2336749190A5017214008 @default.
- W2336749190 hasAuthorship W2336749190A5032541535 @default.
- W2336749190 hasAuthorship W2336749190A5038446954 @default.
- W2336749190 hasAuthorship W2336749190A5073568595 @default.
- W2336749190 hasAuthorship W2336749190A5083239479 @default.
- W2336749190 hasConcept C103272658 @default.
- W2336749190 hasConcept C126061179 @default.
- W2336749190 hasConcept C171250308 @default.
- W2336749190 hasConcept C178790620 @default.
- W2336749190 hasConcept C181966813 @default.
- W2336749190 hasConcept C185592680 @default.
- W2336749190 hasConcept C192562407 @default.
- W2336749190 hasConcept C193154288 @default.
- W2336749190 hasConcept C199360897 @default.
- W2336749190 hasConcept C2779845233 @default.
- W2336749190 hasConcept C2781285689 @default.
- W2336749190 hasConcept C32909587 @default.
- W2336749190 hasConcept C41008148 @default.
- W2336749190 hasConcept C47592295 @default.
- W2336749190 hasConcept C49040817 @default.
- W2336749190 hasConcept C7070889 @default.
- W2336749190 hasConcept C79794668 @default.
- W2336749190 hasConceptScore W2336749190C103272658 @default.
- W2336749190 hasConceptScore W2336749190C126061179 @default.
- W2336749190 hasConceptScore W2336749190C171250308 @default.
- W2336749190 hasConceptScore W2336749190C178790620 @default.
- W2336749190 hasConceptScore W2336749190C181966813 @default.
- W2336749190 hasConceptScore W2336749190C185592680 @default.
- W2336749190 hasConceptScore W2336749190C192562407 @default.
- W2336749190 hasConceptScore W2336749190C193154288 @default.
- W2336749190 hasConceptScore W2336749190C199360897 @default.
- W2336749190 hasConceptScore W2336749190C2779845233 @default.
- W2336749190 hasConceptScore W2336749190C2781285689 @default.
- W2336749190 hasConceptScore W2336749190C32909587 @default.
- W2336749190 hasConceptScore W2336749190C41008148 @default.
- W2336749190 hasConceptScore W2336749190C47592295 @default.
- W2336749190 hasConceptScore W2336749190C49040817 @default.
- W2336749190 hasConceptScore W2336749190C7070889 @default.
- W2336749190 hasConceptScore W2336749190C79794668 @default.
- W2336749190 hasLocation W23367491901 @default.
- W2336749190 hasOpenAccess W2336749190 @default.
- W2336749190 hasPrimaryLocation W23367491901 @default.
- W2336749190 hasRelatedWork W1545098774 @default.
- W2336749190 hasRelatedWork W1996553396 @default.
- W2336749190 hasRelatedWork W2011197980 @default.
- W2336749190 hasRelatedWork W2147984730 @default.
- W2336749190 hasRelatedWork W2460821833 @default.
- W2336749190 hasRelatedWork W2544528304 @default.