Matches in SemOpenAlex for { <https://semopenalex.org/work/W2336997564> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2336997564 abstract "Solutions to inverse problems that are ill-conditioned or ill-posed may have significant intrinsic uncertainty. Unfortunately, analysing and quantifying this uncertainty is very challenging, particularly in high-dimensional problems. As a result, while most modern mathematical imaging methods produce impressive point estimation results, they are generally unable to quantify the uncertainty in the solutions delivered. This paper presents a new general methodology for approximating Bayesian high-posterior-density credibility regions in inverse problems that are convex and potentially very high-dimensional. The approximations are derived by using recent concentration of measure results related to information theory for log-concave random vectors. A remarkable property of the approximations is that they can be computed very efficiently, even in large-scale problems, by using standard convex optimisation techniques. In particular, they are available as a by-product in problems solved by maximum-a-posteriori estimation. The approximations also have favourable theoretical properties, namely they outer-bound the true high-posterior-density credibility regions, and they are stable with respect to model dimension. The proposed methodology is illustrated on two high-dimensional imaging inverse problems related to tomographic reconstruction and sparse deconvolution, where the approximations are used to perform Bayesian hypothesis tests and explore the uncertainty about the solutions, and where proximal Markov chain Monte Carlo algorithms are used as benchmark to compute exact credible regions and measure the approximation error." @default.
- W2336997564 created "2016-06-24" @default.
- W2336997564 creator A5082169271 @default.
- W2336997564 date "2016-02-27" @default.
- W2336997564 modified "2023-09-25" @default.
- W2336997564 title "Maximum-a-posteriori estimation with Bayesian confidence regions" @default.
- W2336997564 hasPublicationYear "2016" @default.
- W2336997564 type Work @default.
- W2336997564 sameAs 2336997564 @default.
- W2336997564 citedByCount "0" @default.
- W2336997564 crossrefType "posted-content" @default.
- W2336997564 hasAuthorship W2336997564A5082169271 @default.
- W2336997564 hasConcept C105795698 @default.
- W2336997564 hasConcept C107673813 @default.
- W2336997564 hasConcept C111350023 @default.
- W2336997564 hasConcept C11413529 @default.
- W2336997564 hasConcept C126255220 @default.
- W2336997564 hasConcept C134306372 @default.
- W2336997564 hasConcept C135252773 @default.
- W2336997564 hasConcept C160234255 @default.
- W2336997564 hasConcept C174576160 @default.
- W2336997564 hasConcept C2780009758 @default.
- W2336997564 hasConcept C28826006 @default.
- W2336997564 hasConcept C32230216 @default.
- W2336997564 hasConcept C33923547 @default.
- W2336997564 hasConcept C41008148 @default.
- W2336997564 hasConcept C41426520 @default.
- W2336997564 hasConcept C49781872 @default.
- W2336997564 hasConcept C77088390 @default.
- W2336997564 hasConcept C9810830 @default.
- W2336997564 hasConceptScore W2336997564C105795698 @default.
- W2336997564 hasConceptScore W2336997564C107673813 @default.
- W2336997564 hasConceptScore W2336997564C111350023 @default.
- W2336997564 hasConceptScore W2336997564C11413529 @default.
- W2336997564 hasConceptScore W2336997564C126255220 @default.
- W2336997564 hasConceptScore W2336997564C134306372 @default.
- W2336997564 hasConceptScore W2336997564C135252773 @default.
- W2336997564 hasConceptScore W2336997564C160234255 @default.
- W2336997564 hasConceptScore W2336997564C174576160 @default.
- W2336997564 hasConceptScore W2336997564C2780009758 @default.
- W2336997564 hasConceptScore W2336997564C28826006 @default.
- W2336997564 hasConceptScore W2336997564C32230216 @default.
- W2336997564 hasConceptScore W2336997564C33923547 @default.
- W2336997564 hasConceptScore W2336997564C41008148 @default.
- W2336997564 hasConceptScore W2336997564C41426520 @default.
- W2336997564 hasConceptScore W2336997564C49781872 @default.
- W2336997564 hasConceptScore W2336997564C77088390 @default.
- W2336997564 hasConceptScore W2336997564C9810830 @default.
- W2336997564 hasLocation W23369975641 @default.
- W2336997564 hasOpenAccess W2336997564 @default.
- W2336997564 hasPrimaryLocation W23369975641 @default.
- W2336997564 hasRelatedWork W1543857124 @default.
- W2336997564 hasRelatedWork W1729509153 @default.
- W2336997564 hasRelatedWork W1982477226 @default.
- W2336997564 hasRelatedWork W2045585605 @default.
- W2336997564 hasRelatedWork W2053332694 @default.
- W2336997564 hasRelatedWork W2146242355 @default.
- W2336997564 hasRelatedWork W2172039401 @default.
- W2336997564 hasRelatedWork W2244426726 @default.
- W2336997564 hasRelatedWork W2283951229 @default.
- W2336997564 hasRelatedWork W2339650925 @default.
- W2336997564 hasRelatedWork W2506836077 @default.
- W2336997564 hasRelatedWork W2600863290 @default.
- W2336997564 hasRelatedWork W2963025476 @default.
- W2336997564 hasRelatedWork W3016155920 @default.
- W2336997564 hasRelatedWork W3022839356 @default.
- W2336997564 hasRelatedWork W3037242188 @default.
- W2336997564 hasRelatedWork W3099438294 @default.
- W2336997564 hasRelatedWork W3131570388 @default.
- W2336997564 hasRelatedWork W3184524864 @default.
- W2336997564 hasRelatedWork W182821777 @default.
- W2336997564 isParatext "false" @default.
- W2336997564 isRetracted "false" @default.
- W2336997564 magId "2336997564" @default.
- W2336997564 workType "article" @default.