Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337266722> ?p ?o ?g. }
- W2337266722 endingPage "3713" @default.
- W2337266722 startingPage "3691" @default.
- W2337266722 abstract "P-glycoprotein (P-gp) is regarded as an important factor in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) characteristics of drugs and drug candidates. Successful prediction of P-gp inhibitors can thus lead to an improved understanding of the underlying mechanisms of both changes in the pharmacokinetics of drugs and drug-drug interactions. Therefore, there has been considerable interest in the development of in silico modeling of P-gp inhibitors in recent years. Considering that a large number of molecular descriptors are used to characterize diverse structural moleculars, efficient feature selection methods are required to extract the most informative predictors. In this work, we constructed an extensive available data set of 2428 molecules that includes 1518 P-gp inhibitors and 910 P-gp noninhibitors from multiple resources. Importantly, a two-step feature selection approach based on a genetic algorithm and a greedy forward-searching algorithm was employed to select the minimum set of the most informative descriptors that contribute to the prediction of P-gp inhibitors. To determine the best machine learning algorithm, 18 classifiers coupled with the feature selection method were compared. The top three best-performing models (flexible discriminant analysis, support vector machine, and random forest) and their ensemble model using respectively only 3, 9, 7, and 14 descriptors achieve an overall accuracy of 83.2%-86.7% for the training set containing 1040 compounds, an overall accuracy of 82.3%-85.5% for the test set containing 1039 compounds, and a prediction accuracy of 77.4%-79.9% for the external validation set containing 349 compounds. The models were further extensively validated by DrugBank database (1890 compounds). The proposed models are competitive with and in some cases better than other published models in terms of prediction accuracy and minimum number of descriptors. Applicability domain then was addressed by developing an ensemble classification model to obtain more reliable predictions. Finally, we employed these models as a virtual screening tool for identifying potential P-gp inhibitors in Traditional Chinese Medicine Systems Pharmacology (TCMSP) database containing a total of 13 051 unique compounds from 498 herbs, resulting in 875 potential P-gp inhibitors and 15 inhibitor-rich herbs. These predictions were partly supported by a literature search and are valuable not only to develop novel P-gp inhibitors from TCM in the early stages of drug development, but also to optimize the use of herbal remedies." @default.
- W2337266722 created "2016-06-24" @default.
- W2337266722 creator A5016260712 @default.
- W2337266722 creator A5017951593 @default.
- W2337266722 creator A5018059159 @default.
- W2337266722 creator A5053136937 @default.
- W2337266722 creator A5069365973 @default.
- W2337266722 creator A5071321692 @default.
- W2337266722 creator A5075576624 @default.
- W2337266722 creator A5077066907 @default.
- W2337266722 date "2015-09-23" @default.
- W2337266722 modified "2023-10-16" @default.
- W2337266722 title "Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening" @default.
- W2337266722 cites W116904514 @default.
- W2337266722 cites W1500895378 @default.
- W2337266722 cites W1513618424 @default.
- W2337266722 cites W1539293547 @default.
- W2337266722 cites W1540105270 @default.
- W2337266722 cites W1554568715 @default.
- W2337266722 cites W1829981714 @default.
- W2337266722 cites W1845532851 @default.
- W2337266722 cites W1885937115 @default.
- W2337266722 cites W1913421412 @default.
- W2337266722 cites W1924522868 @default.
- W2337266722 cites W1963779461 @default.
- W2337266722 cites W1966303307 @default.
- W2337266722 cites W1972184329 @default.
- W2337266722 cites W1972514592 @default.
- W2337266722 cites W1975651250 @default.
- W2337266722 cites W1980377089 @default.
- W2337266722 cites W1983151599 @default.
- W2337266722 cites W1984783030 @default.
- W2337266722 cites W1985021067 @default.
- W2337266722 cites W1985065867 @default.
- W2337266722 cites W1986823509 @default.
- W2337266722 cites W1988326385 @default.
- W2337266722 cites W1990399577 @default.
- W2337266722 cites W2002454046 @default.
- W2337266722 cites W2002899840 @default.
- W2337266722 cites W2004493539 @default.
- W2337266722 cites W2006894564 @default.
- W2337266722 cites W2007919363 @default.
- W2337266722 cites W2009938237 @default.
- W2337266722 cites W2010014978 @default.
- W2337266722 cites W2013108033 @default.
- W2337266722 cites W2017241793 @default.
- W2337266722 cites W2018518196 @default.
- W2337266722 cites W2019681262 @default.
- W2337266722 cites W2021326305 @default.
- W2337266722 cites W2024088210 @default.
- W2337266722 cites W2024112019 @default.
- W2337266722 cites W2024701161 @default.
- W2337266722 cites W2026131661 @default.
- W2337266722 cites W2031569414 @default.
- W2337266722 cites W2033371754 @default.
- W2337266722 cites W2035250366 @default.
- W2337266722 cites W2036807780 @default.
- W2337266722 cites W2037323451 @default.
- W2337266722 cites W2038721064 @default.
- W2337266722 cites W2040651998 @default.
- W2337266722 cites W2041401297 @default.
- W2337266722 cites W2041683647 @default.
- W2337266722 cites W2043767998 @default.
- W2337266722 cites W2046890785 @default.
- W2337266722 cites W2051096877 @default.
- W2337266722 cites W2052007165 @default.
- W2337266722 cites W2053826368 @default.
- W2337266722 cites W2054410567 @default.
- W2337266722 cites W2056165515 @default.
- W2337266722 cites W2061080018 @default.
- W2337266722 cites W2063635472 @default.
- W2337266722 cites W2064427257 @default.
- W2337266722 cites W2067254007 @default.
- W2337266722 cites W2067347004 @default.
- W2337266722 cites W2069275497 @default.
- W2337266722 cites W2074176940 @default.
- W2337266722 cites W2074299694 @default.
- W2337266722 cites W2074779758 @default.
- W2337266722 cites W2077405438 @default.
- W2337266722 cites W2078427367 @default.
- W2337266722 cites W2081810144 @default.
- W2337266722 cites W2085806863 @default.
- W2337266722 cites W2090996511 @default.
- W2337266722 cites W2092414684 @default.
- W2337266722 cites W2099071242 @default.
- W2337266722 cites W2108525782 @default.
- W2337266722 cites W2108662565 @default.
- W2337266722 cites W2111784335 @default.
- W2337266722 cites W2113104789 @default.
- W2337266722 cites W2116943091 @default.
- W2337266722 cites W2118979497 @default.
- W2337266722 cites W2120580001 @default.
- W2337266722 cites W2122306898 @default.
- W2337266722 cites W2124679671 @default.
- W2337266722 cites W2138337905 @default.
- W2337266722 cites W2139462925 @default.
- W2337266722 cites W2149789782 @default.
- W2337266722 cites W2151220776 @default.