Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337357560> ?p ?o ?g. }
- W2337357560 endingPage "415" @default.
- W2337357560 startingPage "396" @default.
- W2337357560 abstract "The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings." @default.
- W2337357560 created "2016-06-24" @default.
- W2337357560 creator A5013890431 @default.
- W2337357560 creator A5040881592 @default.
- W2337357560 creator A5064598775 @default.
- W2337357560 creator A5067185819 @default.
- W2337357560 creator A5071708880 @default.
- W2337357560 date "2016-07-01" @default.
- W2337357560 modified "2023-10-18" @default.
- W2337357560 title "A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects" @default.
- W2337357560 cites W1690138441 @default.
- W2337357560 cites W1964174705 @default.
- W2337357560 cites W1975252476 @default.
- W2337357560 cites W1994800791 @default.
- W2337357560 cites W2001458673 @default.
- W2337357560 cites W2002232913 @default.
- W2337357560 cites W2005173952 @default.
- W2337357560 cites W2016261857 @default.
- W2337357560 cites W2017488448 @default.
- W2337357560 cites W2021121916 @default.
- W2337357560 cites W2041667977 @default.
- W2337357560 cites W2042800784 @default.
- W2337357560 cites W2063550038 @default.
- W2337357560 cites W2065456370 @default.
- W2337357560 cites W2067004499 @default.
- W2337357560 cites W2067005127 @default.
- W2337357560 cites W2069015156 @default.
- W2337357560 cites W2077460620 @default.
- W2337357560 cites W2078155402 @default.
- W2337357560 cites W2078952987 @default.
- W2337357560 cites W2087887080 @default.
- W2337357560 cites W2099315910 @default.
- W2337357560 cites W2104888489 @default.
- W2337357560 cites W2114019248 @default.
- W2337357560 cites W2139516501 @default.
- W2337357560 cites W2139743549 @default.
- W2337357560 cites W2142063750 @default.
- W2337357560 cites W2144930181 @default.
- W2337357560 cites W2161399929 @default.
- W2337357560 cites W2222257862 @default.
- W2337357560 cites W2234726130 @default.
- W2337357560 cites W2242535866 @default.
- W2337357560 cites W2317208281 @default.
- W2337357560 cites W2328892805 @default.
- W2337357560 cites W2329241674 @default.
- W2337357560 cites W2420397679 @default.
- W2337357560 cites W3100262759 @default.
- W2337357560 cites W3100699033 @default.
- W2337357560 doi "https://doi.org/10.1016/j.jcp.2016.04.020" @default.
- W2337357560 hasPublicationYear "2016" @default.
- W2337357560 type Work @default.
- W2337357560 sameAs 2337357560 @default.
- W2337357560 citedByCount "45" @default.
- W2337357560 countsByYear W23373575602016 @default.
- W2337357560 countsByYear W23373575602017 @default.
- W2337357560 countsByYear W23373575602018 @default.
- W2337357560 countsByYear W23373575602019 @default.
- W2337357560 countsByYear W23373575602020 @default.
- W2337357560 countsByYear W23373575602021 @default.
- W2337357560 countsByYear W23373575602022 @default.
- W2337357560 countsByYear W23373575602023 @default.
- W2337357560 crossrefType "journal-article" @default.
- W2337357560 hasAuthorship W2337357560A5013890431 @default.
- W2337357560 hasAuthorship W2337357560A5040881592 @default.
- W2337357560 hasAuthorship W2337357560A5064598775 @default.
- W2337357560 hasAuthorship W2337357560A5067185819 @default.
- W2337357560 hasAuthorship W2337357560A5071708880 @default.
- W2337357560 hasBestOaLocation W23373575602 @default.
- W2337357560 hasConcept C121332964 @default.
- W2337357560 hasConcept C121864883 @default.
- W2337357560 hasConcept C147120987 @default.
- W2337357560 hasConcept C202444582 @default.
- W2337357560 hasConcept C2776445377 @default.
- W2337357560 hasConcept C33923547 @default.
- W2337357560 hasConcept C51544822 @default.
- W2337357560 hasConcept C59282198 @default.
- W2337357560 hasConcept C62520636 @default.
- W2337357560 hasConcept C74650414 @default.
- W2337357560 hasConcept C78045399 @default.
- W2337357560 hasConcept C9652623 @default.
- W2337357560 hasConceptScore W2337357560C121332964 @default.
- W2337357560 hasConceptScore W2337357560C121864883 @default.
- W2337357560 hasConceptScore W2337357560C147120987 @default.
- W2337357560 hasConceptScore W2337357560C202444582 @default.
- W2337357560 hasConceptScore W2337357560C2776445377 @default.
- W2337357560 hasConceptScore W2337357560C33923547 @default.
- W2337357560 hasConceptScore W2337357560C51544822 @default.
- W2337357560 hasConceptScore W2337357560C59282198 @default.
- W2337357560 hasConceptScore W2337357560C62520636 @default.
- W2337357560 hasConceptScore W2337357560C74650414 @default.
- W2337357560 hasConceptScore W2337357560C78045399 @default.
- W2337357560 hasConceptScore W2337357560C9652623 @default.
- W2337357560 hasFunder F4320320883 @default.
- W2337357560 hasLocation W23373575601 @default.
- W2337357560 hasLocation W23373575602 @default.
- W2337357560 hasLocation W23373575603 @default.
- W2337357560 hasLocation W23373575604 @default.
- W2337357560 hasLocation W23373575605 @default.