Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337472488> ?p ?o ?g. }
- W2337472488 endingPage "463" @default.
- W2337472488 startingPage "447" @default.
- W2337472488 abstract "Degtyarenko, A. M., E. S. Simon, T. Norden-Krichmar, and R. E. Burke. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. J. Neurophysiol. 79: 447–463, 1998. We have compared state-dependent transmission through oligosynaptic (minimally disynaptic) reflex pathways from low-threshold cutaneous and muscle afferents to some flexor and extensor lumbosacral motoneurons during fictive locomotion and scratching in decerebrate unanesthetized cats. As reported in earlier work, oligosynaptic cutaneous excitatory postsynaptic potentials (EPSPs) in flexor digitorum longus (FDL) and inhibitory postsynaptic potentials (IPSPs) in extensor digitorum (EDL) longus motoneurons were enhanced markedly during the early flexion phase of fictive locomotion. We show in this paper that, in contrast, these cutaneous reflex pathways were depressed markedly during all phases of fictive scratching. On the other hand, disynaptic EPSPs produced by homonymous and synergist group I muscle afferents in flexor (tibialis anterior and EDL) motoneurons were present and strongly modulated during both fictive locomotion and scratching. During both actions, these disynaptic group I EPSPs appeared or exhibited the largest amplitude when the motoneuron membrane potential was most depolarized and the parent motor pool was active. There was an interesting exception to the simple pattern of coincident group I EPSP enhancement and motoneuron depolarization. During locomotion, disynaptic group I EPSPs in both FDL and flexor hallucis longus (FHL) motoneurons cells were facilitated during the extension phase, although FDL motoneurons were relatively hyperpolarized whereas FHL cells were depolarized. The reverse situation was found during fictive scratching; group I EPSPs were facilitated in both FDL and FHL cells during the flexion phase when FDL motoneurons were depolarized and FHL cells were relatively hyperpolarized. These observations suggest that the disynaptic EPSPs in these two motor nuclei are produced by common interneurons. Reciprocal disynaptic inhibitory pathways from group Ia muscle afferents to antagonist motoneurons were also active and subject to phase-dependent modulation during both fictive locomotion and scratching. In all but one cell tested, reciprocal disynaptic group Ia IPSPs were largest during those phases in which the motoneuron membrane potential was relatively hyperpolarized and the parent motor pool was inactive. Oligosynaptic PSPs in motoneurons produced by stimulation of the mesencephalic locomotor region (MLR) were modulated strongly during fictive locomotion but were suppressed powerfully throughout fictive scratching. Large cord dorsum potentials generated by MLR stimuli also were suppressed markedly during fictive scratching. These results allow certain inferences about the organization of interneurons in the pathways examined. They also suggest that the central pattern generators that produce fictive locomotion and scratching are organized differently." @default.
- W2337472488 created "2016-06-24" @default.
- W2337472488 creator A5001292500 @default.
- W2337472488 creator A5023097090 @default.
- W2337472488 creator A5055291097 @default.
- W2337472488 creator A5084252143 @default.
- W2337472488 date "1998-01-01" @default.
- W2337472488 modified "2023-09-25" @default.
- W2337472488 title "Modulation of Oligosynaptic Cutaneous and Muscle Afferent Reflex Pathways During Fictive Locomotion and Scratching in the Cat" @default.
- W2337472488 cites W1529305485 @default.
- W2337472488 cites W1675839706 @default.
- W2337472488 cites W1966565263 @default.
- W2337472488 cites W1976915307 @default.
- W2337472488 cites W1979954447 @default.
- W2337472488 cites W1980575880 @default.
- W2337472488 cites W1983562002 @default.
- W2337472488 cites W1985342854 @default.
- W2337472488 cites W1987032490 @default.
- W2337472488 cites W1993173890 @default.
- W2337472488 cites W2005281147 @default.
- W2337472488 cites W2007769909 @default.
- W2337472488 cites W2014729386 @default.
- W2337472488 cites W2020910495 @default.
- W2337472488 cites W2022322427 @default.
- W2337472488 cites W2022437069 @default.
- W2337472488 cites W2025152373 @default.
- W2337472488 cites W2032957079 @default.
- W2337472488 cites W2044532655 @default.
- W2337472488 cites W2062185106 @default.
- W2337472488 cites W2068383442 @default.
- W2337472488 cites W2070597621 @default.
- W2337472488 cites W2072985771 @default.
- W2337472488 cites W2073717280 @default.
- W2337472488 cites W2076769908 @default.
- W2337472488 cites W2081975125 @default.
- W2337472488 cites W2083277650 @default.
- W2337472488 cites W2085531075 @default.
- W2337472488 cites W2086265687 @default.
- W2337472488 cites W2086762011 @default.
- W2337472488 cites W2087923086 @default.
- W2337472488 cites W2108384226 @default.
- W2337472488 cites W2110198466 @default.
- W2337472488 cites W2141290457 @default.
- W2337472488 cites W2146794131 @default.
- W2337472488 cites W2238529892 @default.
- W2337472488 cites W2288649507 @default.
- W2337472488 cites W2303850821 @default.
- W2337472488 cites W2323405042 @default.
- W2337472488 cites W2336577233 @default.
- W2337472488 cites W2336779469 @default.
- W2337472488 cites W2338894068 @default.
- W2337472488 cites W2340754523 @default.
- W2337472488 cites W2413449543 @default.
- W2337472488 cites W2415617113 @default.
- W2337472488 cites W2418601650 @default.
- W2337472488 cites W2418848071 @default.
- W2337472488 cites W2438361494 @default.
- W2337472488 cites W2438937308 @default.
- W2337472488 cites W2465684713 @default.
- W2337472488 cites W3024701533 @default.
- W2337472488 doi "https://doi.org/10.1152/jn.1998.79.1.447" @default.
- W2337472488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9425213" @default.
- W2337472488 hasPublicationYear "1998" @default.
- W2337472488 type Work @default.
- W2337472488 sameAs 2337472488 @default.
- W2337472488 citedByCount "68" @default.
- W2337472488 countsByYear W23374724882012 @default.
- W2337472488 countsByYear W23374724882013 @default.
- W2337472488 countsByYear W23374724882015 @default.
- W2337472488 countsByYear W23374724882016 @default.
- W2337472488 countsByYear W23374724882017 @default.
- W2337472488 countsByYear W23374724882018 @default.
- W2337472488 countsByYear W23374724882019 @default.
- W2337472488 countsByYear W23374724882020 @default.
- W2337472488 countsByYear W23374724882021 @default.
- W2337472488 countsByYear W23374724882022 @default.
- W2337472488 crossrefType "journal-article" @default.
- W2337472488 hasAuthorship W2337472488A5001292500 @default.
- W2337472488 hasAuthorship W2337472488A5023097090 @default.
- W2337472488 hasAuthorship W2337472488A5055291097 @default.
- W2337472488 hasAuthorship W2337472488A5084252143 @default.
- W2337472488 hasBestOaLocation W23374724881 @default.
- W2337472488 hasConcept C105702510 @default.
- W2337472488 hasConcept C112592302 @default.
- W2337472488 hasConcept C121332964 @default.
- W2337472488 hasConcept C126322002 @default.
- W2337472488 hasConcept C169760540 @default.
- W2337472488 hasConcept C170493617 @default.
- W2337472488 hasConcept C17077164 @default.
- W2337472488 hasConcept C185263204 @default.
- W2337472488 hasConcept C185592680 @default.
- W2337472488 hasConcept C197341189 @default.
- W2337472488 hasConcept C24890656 @default.
- W2337472488 hasConcept C2780196728 @default.
- W2337472488 hasConcept C71924100 @default.
- W2337472488 hasConcept C83974742 @default.
- W2337472488 hasConcept C86803240 @default.
- W2337472488 hasConceptScore W2337472488C105702510 @default.