Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337630877> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2337630877 endingPage "2171" @default.
- W2337630877 startingPage "2160" @default.
- W2337630877 abstract "Product quality is a high priority for the beef industry because of its importance as a major driver of consumer demand for beef and the ability of the industry to improve it. A 2-prong approach based on implementation of a genetic program to improve eating quality and a system to communicate eating quality and increase the probability that consumers' eating quality expectations are met is outlined. The objectives of this study were 1) to identify the best carcass and meat composition traits to be used in a selection program to improve eating quality and 2) to develop a relatively small number of classes that reflect real and perceptible differences in eating quality that can be communicated to consumers and identify a subset of carcass and meat composition traits with the highest predictive accuracy across all eating quality classes. Carcass traits, meat composition, including Warner-Bratzler shear force (WBSF), intramuscular fat content (IMFC), trained sensory panel scores, and mineral composition traits of 1,666 Angus cattle were used in this study. Three eating quality indexes, EATQ1, EATQ2, and EATQ3, were generated by using different weights for the sensory traits (emphasis on tenderness, flavor, and juiciness, respectively). The best model for predicting eating quality explained 37%, 9%, and 19% of the variability of EATQ1, EATQ2, and EATQ3, and 2 traits, WBSF and IMFC, accounted for most of the variability explained by the best models. EATQ1 combines tenderness, juiciness, and flavor assessed by trained panels with 0.60, 0.15, and 0.25 weights, best describes North American consumers, and has a moderate heritability (0.18 ± 0.06). A selection index (I= -0.5[WBSF] + 0.3[IMFC]) based on phenotypic and genetic variances and covariances can be used to improve eating quality as a correlated trait. The 3 indexes (EATQ1, EATQ2, and EATQ3) were used to generate 3 equal (33.3%) low, medium, and high eating quality classes, and linear combinations of traits that best predict class membership were estimated using a predictive discriminant analysis. The best predictive model to classify new observations into low, medium, and high eating quality classes defined by the EATQ1 index included WBSF, IMFC, HCW, and marbling score and resulted in a total error rate of 47.06%, much lower than the 60.74% error rate when the prediction of class membership was based on the USDA grading system. The 2 best predictors were WBSF and IMFC, and they accounted for 97.2% of the variability explained by the best model." @default.
- W2337630877 created "2016-06-24" @default.
- W2337630877 creator A5003559128 @default.
- W2337630877 creator A5015731986 @default.
- W2337630877 creator A5049853536 @default.
- W2337630877 creator A5075649193 @default.
- W2337630877 creator A5086626210 @default.
- W2337630877 date "2016-05-01" @default.
- W2337630877 modified "2023-10-13" @default.
- W2337630877 title "Strategies to predict and improve eating quality of cooked beef using carcass and meat composition traits in Angus cattle" @default.
- W2337630877 cites W1018920761 @default.
- W2337630877 cites W1500488683 @default.
- W2337630877 cites W1554560421 @default.
- W2337630877 cites W1594836240 @default.
- W2337630877 cites W172869625 @default.
- W2337630877 cites W181243420 @default.
- W2337630877 cites W1965429924 @default.
- W2337630877 cites W1983678009 @default.
- W2337630877 cites W1989411120 @default.
- W2337630877 cites W1991954588 @default.
- W2337630877 cites W2004895516 @default.
- W2337630877 cites W2011749507 @default.
- W2337630877 cites W2077443795 @default.
- W2337630877 cites W2107451045 @default.
- W2337630877 cites W2111675811 @default.
- W2337630877 cites W2125336280 @default.
- W2337630877 cites W2137808057 @default.
- W2337630877 cites W2158527114 @default.
- W2337630877 cites W2162148669 @default.
- W2337630877 cites W2323986616 @default.
- W2337630877 cites W4246075095 @default.
- W2337630877 doi "https://doi.org/10.2527/jas.2015-0216" @default.
- W2337630877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27285712" @default.
- W2337630877 hasPublicationYear "2016" @default.
- W2337630877 type Work @default.
- W2337630877 sameAs 2337630877 @default.
- W2337630877 citedByCount "8" @default.
- W2337630877 countsByYear W23376308772017 @default.
- W2337630877 countsByYear W23376308772018 @default.
- W2337630877 countsByYear W23376308772019 @default.
- W2337630877 countsByYear W23376308772020 @default.
- W2337630877 countsByYear W23376308772021 @default.
- W2337630877 countsByYear W23376308772023 @default.
- W2337630877 crossrefType "journal-article" @default.
- W2337630877 hasAuthorship W2337630877A5003559128 @default.
- W2337630877 hasAuthorship W2337630877A5015731986 @default.
- W2337630877 hasAuthorship W2337630877A5049853536 @default.
- W2337630877 hasAuthorship W2337630877A5075649193 @default.
- W2337630877 hasAuthorship W2337630877A5086626210 @default.
- W2337630877 hasConcept C111472728 @default.
- W2337630877 hasConcept C138885662 @default.
- W2337630877 hasConcept C140793950 @default.
- W2337630877 hasConcept C150903083 @default.
- W2337630877 hasConcept C2776635132 @default.
- W2337630877 hasConcept C2779530757 @default.
- W2337630877 hasConcept C2780003869 @default.
- W2337630877 hasConcept C2780505807 @default.
- W2337630877 hasConcept C2780719635 @default.
- W2337630877 hasConcept C31903555 @default.
- W2337630877 hasConcept C40231798 @default.
- W2337630877 hasConcept C41895202 @default.
- W2337630877 hasConcept C7150383 @default.
- W2337630877 hasConcept C86803240 @default.
- W2337630877 hasConceptScore W2337630877C111472728 @default.
- W2337630877 hasConceptScore W2337630877C138885662 @default.
- W2337630877 hasConceptScore W2337630877C140793950 @default.
- W2337630877 hasConceptScore W2337630877C150903083 @default.
- W2337630877 hasConceptScore W2337630877C2776635132 @default.
- W2337630877 hasConceptScore W2337630877C2779530757 @default.
- W2337630877 hasConceptScore W2337630877C2780003869 @default.
- W2337630877 hasConceptScore W2337630877C2780505807 @default.
- W2337630877 hasConceptScore W2337630877C2780719635 @default.
- W2337630877 hasConceptScore W2337630877C31903555 @default.
- W2337630877 hasConceptScore W2337630877C40231798 @default.
- W2337630877 hasConceptScore W2337630877C41895202 @default.
- W2337630877 hasConceptScore W2337630877C7150383 @default.
- W2337630877 hasConceptScore W2337630877C86803240 @default.
- W2337630877 hasIssue "5" @default.
- W2337630877 hasLocation W23376308771 @default.
- W2337630877 hasLocation W23376308772 @default.
- W2337630877 hasOpenAccess W2337630877 @default.
- W2337630877 hasPrimaryLocation W23376308771 @default.
- W2337630877 hasRelatedWork W1995571655 @default.
- W2337630877 hasRelatedWork W2090827859 @default.
- W2337630877 hasRelatedWork W2121242908 @default.
- W2337630877 hasRelatedWork W2138299235 @default.
- W2337630877 hasRelatedWork W2153035261 @default.
- W2337630877 hasRelatedWork W2283822265 @default.
- W2337630877 hasRelatedWork W2337209366 @default.
- W2337630877 hasRelatedWork W2342505150 @default.
- W2337630877 hasRelatedWork W2793954211 @default.
- W2337630877 hasRelatedWork W2983494342 @default.
- W2337630877 hasVolume "94" @default.
- W2337630877 isParatext "false" @default.
- W2337630877 isRetracted "false" @default.
- W2337630877 magId "2337630877" @default.
- W2337630877 workType "article" @default.