Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337648462> ?p ?o ?g. }
- W2337648462 endingPage "3448" @default.
- W2337648462 startingPage "3424" @default.
- W2337648462 abstract "Missing data are a common problem in clinical and epidemiological research, especially in longitudinal studies. Despite many methodological advances in recent decades, many papers on clinical trials and epidemiological studies do not report using principled statistical methods to accommodate missing data or use ineffective or inappropriate techniques. Two refined techniques are presented here: generalized estimating equations (GEEs) and weighted generalized estimating equations (WGEEs). These techniques are an extension of generalized linear models to longitudinal or clustered data, where observations are no longer independent. They can appropriately handle missing data when the missingness is completely at random (GEE and WGEE) or at random (WGEE) and do not require the outcome to be normally distributed. Our aim is to describe and illustrate with a real example, in a simple and accessible way to researchers, these techniques for handling missing data in the context of longitudinal studies subject to dropout and show how to implement them in R. We apply them to assess the evolution of health-related quality of life in coronary patients in a data set subject to dropout. Copyright © 2016 John Wiley & Sons, Ltd." @default.
- W2337648462 created "2016-06-24" @default.
- W2337648462 creator A5001698753 @default.
- W2337648462 creator A5011289565 @default.
- W2337648462 creator A5014527164 @default.
- W2337648462 creator A5049856478 @default.
- W2337648462 creator A5063102032 @default.
- W2337648462 date "2016-04-05" @default.
- W2337648462 modified "2023-09-26" @default.
- W2337648462 title "Simple generalized estimating equations (GEEs) and weighted generalized estimating equations (WGEEs) in longitudinal studies with dropouts: guidelines and implementation in R" @default.
- W2337648462 cites W1606541667 @default.
- W2337648462 cites W1969643738 @default.
- W2337648462 cites W1970565801 @default.
- W2337648462 cites W1973190226 @default.
- W2337648462 cites W1973907010 @default.
- W2337648462 cites W1978136073 @default.
- W2337648462 cites W1988971925 @default.
- W2337648462 cites W1991350847 @default.
- W2337648462 cites W1991556223 @default.
- W2337648462 cites W1991788161 @default.
- W2337648462 cites W1991911919 @default.
- W2337648462 cites W1993577532 @default.
- W2337648462 cites W2004050594 @default.
- W2337648462 cites W2010098948 @default.
- W2337648462 cites W2012222777 @default.
- W2337648462 cites W2037490936 @default.
- W2337648462 cites W2041499523 @default.
- W2337648462 cites W2041726169 @default.
- W2337648462 cites W2048128394 @default.
- W2337648462 cites W2050762021 @default.
- W2337648462 cites W2053068905 @default.
- W2337648462 cites W2057012849 @default.
- W2337648462 cites W2060886633 @default.
- W2337648462 cites W2067272524 @default.
- W2337648462 cites W2069138619 @default.
- W2337648462 cites W2078427564 @default.
- W2337648462 cites W2078965693 @default.
- W2337648462 cites W2082934890 @default.
- W2337648462 cites W2089973119 @default.
- W2337648462 cites W2095437242 @default.
- W2337648462 cites W2100358124 @default.
- W2337648462 cites W2101338080 @default.
- W2337648462 cites W2103958007 @default.
- W2337648462 cites W2110776215 @default.
- W2337648462 cites W2114678113 @default.
- W2337648462 cites W2115098571 @default.
- W2337648462 cites W2115505544 @default.
- W2337648462 cites W2116739230 @default.
- W2337648462 cites W2118502261 @default.
- W2337648462 cites W2133494987 @default.
- W2337648462 cites W2137370054 @default.
- W2337648462 cites W2138985418 @default.
- W2337648462 cites W2141280242 @default.
- W2337648462 cites W2146731044 @default.
- W2337648462 cites W2149407601 @default.
- W2337648462 cites W2149860264 @default.
- W2337648462 cites W2168862366 @default.
- W2337648462 cites W2091434751 @default.
- W2337648462 doi "https://doi.org/10.1002/sim.6947" @default.
- W2337648462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27059703" @default.
- W2337648462 hasPublicationYear "2016" @default.
- W2337648462 type Work @default.
- W2337648462 sameAs 2337648462 @default.
- W2337648462 citedByCount "41" @default.
- W2337648462 countsByYear W23376484622016 @default.
- W2337648462 countsByYear W23376484622017 @default.
- W2337648462 countsByYear W23376484622018 @default.
- W2337648462 countsByYear W23376484622019 @default.
- W2337648462 countsByYear W23376484622020 @default.
- W2337648462 countsByYear W23376484622021 @default.
- W2337648462 countsByYear W23376484622022 @default.
- W2337648462 countsByYear W23376484622023 @default.
- W2337648462 crossrefType "journal-article" @default.
- W2337648462 hasAuthorship W2337648462A5001698753 @default.
- W2337648462 hasAuthorship W2337648462A5011289565 @default.
- W2337648462 hasAuthorship W2337648462A5014527164 @default.
- W2337648462 hasAuthorship W2337648462A5049856478 @default.
- W2337648462 hasAuthorship W2337648462A5063102032 @default.
- W2337648462 hasConcept C105795698 @default.
- W2337648462 hasConcept C111472728 @default.
- W2337648462 hasConcept C119857082 @default.
- W2337648462 hasConcept C138885662 @default.
- W2337648462 hasConcept C149782125 @default.
- W2337648462 hasConcept C151730666 @default.
- W2337648462 hasConcept C154945302 @default.
- W2337648462 hasConcept C177264268 @default.
- W2337648462 hasConcept C185429906 @default.
- W2337648462 hasConcept C199360897 @default.
- W2337648462 hasConcept C204016326 @default.
- W2337648462 hasConcept C27403532 @default.
- W2337648462 hasConcept C2776145597 @default.
- W2337648462 hasConcept C2778029271 @default.
- W2337648462 hasConcept C2779343474 @default.
- W2337648462 hasConcept C2780586882 @default.
- W2337648462 hasConcept C33923547 @default.
- W2337648462 hasConcept C41008148 @default.
- W2337648462 hasConcept C53084192 @default.
- W2337648462 hasConcept C58489278 @default.