Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337663457> ?p ?o ?g. }
- W2337663457 endingPage "309" @default.
- W2337663457 startingPage "297" @default.
- W2337663457 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 312:297-309 (2006) - doi:10.3354/meps312297 Automatic image analysis of plankton: future perspectives Phil F. Culverhouse1,**, Robert Williams2, Mark Benfield3, Per R. Flood4, Anne F. Sell5, Maria Grazia Mazzocchi6, Isabella Buttino6, Mike Sieracki7 1Centre for Interactive Intelligent Systems, University of Plymouth, Plymouth PL4 8AA, UK 2Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK 3Louisiana State University, Coastal Fisheries Institute, Dept. Oceanology and Coastal Sciences, Baton Rouge, Lousiana 70803, USA 4Bathybiologica A/S, Gerhard Grans vei 58, 5081 Bergen, Norway 5Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany 6Stazione Zoologica A Dohrn, Villa Comunale, 80121 Naples, Italy 7J. J. MacIsaac Facility for Individual Particle Analysis, Bigelow Laboratory for Ocean Sciences, 180 McKown Point, PO Box 475, West Boothbay Harbor, Maine 04575-0475, USA Email: pculverhouse@plymouth.ac.uk ABSTRACT: In the future, if marine science is to achieve any progress in addressing biological diversity of ocean plankton, then it needs to sponsor development of new technology. One requirement is the development of high-resolution sensors for imaging field-collected and in situ specimens in a non-invasive manner. The rapid automatic categorisation of species must be accompanied by the creation of very large distributed databases in the form of high-resolution 3D rotatable images of species, which could become the standard reference source for automatic identification. These 3D images will serve as classification standards for field applications, and (in adjusted optical quality) as training templates for image analysis systems based on statistical and other pattern-matching processes. This paper sets out the basic argument for such developments and proposes a long-term solution to achieve these aims. KEY WORDS: Natural object recognition · Object categorization · Zooplankton · Phytoplankton · Imaging · Taxonomy · Automatic identification · Image analysis Full text in pdf format PreviousExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 312. Online publication date: April 24, 2006 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2006 Inter-Research." @default.
- W2337663457 created "2016-06-24" @default.
- W2337663457 creator A5007824632 @default.
- W2337663457 creator A5016398246 @default.
- W2337663457 creator A5017383788 @default.
- W2337663457 creator A5037421554 @default.
- W2337663457 creator A5038758100 @default.
- W2337663457 creator A5061942052 @default.
- W2337663457 creator A5068529224 @default.
- W2337663457 creator A5087830879 @default.
- W2337663457 date "2006-04-24" @default.
- W2337663457 modified "2023-10-18" @default.
- W2337663457 title "AS WE SEE IT* Automatic image analysis of plankton: future perspectives" @default.
- W2337663457 cites W1490695366 @default.
- W2337663457 cites W1523786725 @default.
- W2337663457 cites W1530645078 @default.
- W2337663457 cites W1538066839 @default.
- W2337663457 cites W1541847650 @default.
- W2337663457 cites W1546291073 @default.
- W2337663457 cites W1964838709 @default.
- W2337663457 cites W1966036357 @default.
- W2337663457 cites W1981860511 @default.
- W2337663457 cites W1986667786 @default.
- W2337663457 cites W2004603621 @default.
- W2337663457 cites W2005912592 @default.
- W2337663457 cites W2009310038 @default.
- W2337663457 cites W2010920345 @default.
- W2337663457 cites W2023981239 @default.
- W2337663457 cites W2024622223 @default.
- W2337663457 cites W2033209251 @default.
- W2337663457 cites W2039124145 @default.
- W2337663457 cites W2045995200 @default.
- W2337663457 cites W2046363097 @default.
- W2337663457 cites W2050681620 @default.
- W2337663457 cites W2055995351 @default.
- W2337663457 cites W2056084482 @default.
- W2337663457 cites W2059286253 @default.
- W2337663457 cites W2062863235 @default.
- W2337663457 cites W2069429266 @default.
- W2337663457 cites W2070182339 @default.
- W2337663457 cites W2088684801 @default.
- W2337663457 cites W2090858655 @default.
- W2337663457 cites W2091250681 @default.
- W2337663457 cites W2096718134 @default.
- W2337663457 cites W2148527040 @default.
- W2337663457 cites W2148775892 @default.
- W2337663457 cites W2159770041 @default.
- W2337663457 cites W2166774376 @default.
- W2337663457 cites W2326873200 @default.
- W2337663457 cites W247117328 @default.
- W2337663457 cites W2480421812 @default.
- W2337663457 cites W2495623448 @default.
- W2337663457 cites W2527090549 @default.
- W2337663457 cites W2981278773 @default.
- W2337663457 cites W596378922 @default.
- W2337663457 doi "https://doi.org/10.3354/meps312297" @default.
- W2337663457 hasPublicationYear "2006" @default.
- W2337663457 type Work @default.
- W2337663457 sameAs 2337663457 @default.
- W2337663457 citedByCount "91" @default.
- W2337663457 countsByYear W23376634572012 @default.
- W2337663457 countsByYear W23376634572013 @default.
- W2337663457 countsByYear W23376634572014 @default.
- W2337663457 countsByYear W23376634572015 @default.
- W2337663457 countsByYear W23376634572016 @default.
- W2337663457 countsByYear W23376634572017 @default.
- W2337663457 countsByYear W23376634572018 @default.
- W2337663457 countsByYear W23376634572019 @default.
- W2337663457 countsByYear W23376634572020 @default.
- W2337663457 countsByYear W23376634572021 @default.
- W2337663457 countsByYear W23376634572022 @default.
- W2337663457 countsByYear W23376634572023 @default.
- W2337663457 crossrefType "journal-article" @default.
- W2337663457 hasAuthorship W2337663457A5007824632 @default.
- W2337663457 hasAuthorship W2337663457A5016398246 @default.
- W2337663457 hasAuthorship W2337663457A5017383788 @default.
- W2337663457 hasAuthorship W2337663457A5037421554 @default.
- W2337663457 hasAuthorship W2337663457A5038758100 @default.
- W2337663457 hasAuthorship W2337663457A5061942052 @default.
- W2337663457 hasAuthorship W2337663457A5068529224 @default.
- W2337663457 hasAuthorship W2337663457A5087830879 @default.
- W2337663457 hasBestOaLocation W23376634571 @default.
- W2337663457 hasConcept C108469399 @default.
- W2337663457 hasConcept C111368507 @default.
- W2337663457 hasConcept C127313418 @default.
- W2337663457 hasConcept C135895429 @default.
- W2337663457 hasConcept C161191863 @default.
- W2337663457 hasConcept C18903297 @default.
- W2337663457 hasConcept C202041845 @default.
- W2337663457 hasConcept C205649164 @default.
- W2337663457 hasConcept C2778315783 @default.
- W2337663457 hasConcept C2991903675 @default.
- W2337663457 hasConcept C41008148 @default.
- W2337663457 hasConcept C505870484 @default.
- W2337663457 hasConcept C514101110 @default.
- W2337663457 hasConcept C77088390 @default.
- W2337663457 hasConcept C86803240 @default.
- W2337663457 hasConceptScore W2337663457C108469399 @default.