Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337701009> ?p ?o ?g. }
- W2337701009 abstract "In this paper, we use genetic algorithms (GAs), particle swarm optimization (PSO) and hybrid versions of them to solve university course timetabling problem (UCTP). A new crossover method called 2- staged n-point crossover by combining classic n-point crossover method and graph colouring heuristics is introduced which aims to generate free-conflict offspring. The hybrid algorithms are generated by adding a local search (LS), based on hill climbing (HC) method, on three global search algorithms i.e. the GA, the PSO and a combination of them called GAPSO. The proposed algorithms such as hyper-heuristic systems, manage a set of graph colouring heuristics as low-level heuristics in a hyper-heuristic strategy. The proposed algorithms are examined by 11 well-known benchmark problems. Experimental results demonstrate that the GA outperforms the PSO and the GAPSO algorithms, but the hybrid GAPSO algorithm has a better performance than the hybrid GA and hybrid PSO. Also all hybrid algorithms obtain a better performance than their non- hybrid competitors. However the GA has been widely applied to UCTP, to the best our knowledge the obtained results of GA in this paper are the first reported results on these databases which are competitive than results of other approaches. In a later part of the comparative experiments, a comparison of our proposed algorithms and 14 other approaches reported in the literature confirms that by considering the hybrid GAPSO as a hybrid hyper-heuristic, it is one of the best strategies for the hyper-heuristic systems on the UCTP proposed so far. Also results of the hybrid GAPSO in comparison of other hybrid algorithms proposed in the literature are completely comparable." @default.
- W2337701009 created "2016-06-24" @default.
- W2337701009 creator A5004349900 @default.
- W2337701009 creator A5083173712 @default.
- W2337701009 date "2013-01-01" @default.
- W2337701009 modified "2023-09-24" @default.
- W2337701009 title "Hybridizing Genetic Algorithms and Particle Swarm Optimization Transplanted into a Hyper-Heuristic System for Solving University Course Timetabling Problem" @default.
- W2337701009 cites W1489881420 @default.
- W2337701009 cites W1490782680 @default.
- W2337701009 cites W1500151553 @default.
- W2337701009 cites W1501271377 @default.
- W2337701009 cites W1512847430 @default.
- W2337701009 cites W1514724177 @default.
- W2337701009 cites W1518679956 @default.
- W2337701009 cites W1539889974 @default.
- W2337701009 cites W1540427357 @default.
- W2337701009 cites W1544329015 @default.
- W2337701009 cites W1561487191 @default.
- W2337701009 cites W1581822553 @default.
- W2337701009 cites W1595465109 @default.
- W2337701009 cites W1603048732 @default.
- W2337701009 cites W1668207500 @default.
- W2337701009 cites W17767122 @default.
- W2337701009 cites W1817244122 @default.
- W2337701009 cites W1947157004 @default.
- W2337701009 cites W1964072303 @default.
- W2337701009 cites W1968210732 @default.
- W2337701009 cites W1975473038 @default.
- W2337701009 cites W1994973770 @default.
- W2337701009 cites W1999940323 @default.
- W2337701009 cites W2007257801 @default.
- W2337701009 cites W2011716148 @default.
- W2337701009 cites W2022367909 @default.
- W2337701009 cites W2027488395 @default.
- W2337701009 cites W2033930346 @default.
- W2337701009 cites W2036108050 @default.
- W2337701009 cites W2040727232 @default.
- W2337701009 cites W2045837509 @default.
- W2337701009 cites W2050762864 @default.
- W2337701009 cites W2052272326 @default.
- W2337701009 cites W2055658410 @default.
- W2337701009 cites W2063159340 @default.
- W2337701009 cites W207226807 @default.
- W2337701009 cites W2074595274 @default.
- W2337701009 cites W2086726443 @default.
- W2337701009 cites W2097428991 @default.
- W2337701009 cites W2099942580 @default.
- W2337701009 cites W2102147173 @default.
- W2337701009 cites W2102642246 @default.
- W2337701009 cites W2108432292 @default.
- W2337701009 cites W2109964130 @default.
- W2337701009 cites W2110244118 @default.
- W2337701009 cites W2112255588 @default.
- W2337701009 cites W2112634036 @default.
- W2337701009 cites W2113836425 @default.
- W2337701009 cites W2114388796 @default.
- W2337701009 cites W2127670720 @default.
- W2337701009 cites W2136810816 @default.
- W2337701009 cites W2138029669 @default.
- W2337701009 cites W2138144419 @default.
- W2337701009 cites W2152512538 @default.
- W2337701009 cites W2154392307 @default.
- W2337701009 cites W2161393961 @default.
- W2337701009 cites W2163577260 @default.
- W2337701009 cites W561517177 @default.
- W2337701009 cites W62280645 @default.
- W2337701009 cites W1507857569 @default.
- W2337701009 cites W2516542147 @default.
- W2337701009 cites W2521398177 @default.
- W2337701009 hasPublicationYear "2013" @default.
- W2337701009 type Work @default.
- W2337701009 sameAs 2337701009 @default.
- W2337701009 citedByCount "2" @default.
- W2337701009 countsByYear W23377010092014 @default.
- W2337701009 countsByYear W23377010092016 @default.
- W2337701009 crossrefType "journal-article" @default.
- W2337701009 hasAuthorship W2337701009A5004349900 @default.
- W2337701009 hasAuthorship W2337701009A5083173712 @default.
- W2337701009 hasConcept C109718341 @default.
- W2337701009 hasConcept C11413529 @default.
- W2337701009 hasConcept C122507166 @default.
- W2337701009 hasConcept C126255220 @default.
- W2337701009 hasConcept C127705205 @default.
- W2337701009 hasConcept C13280743 @default.
- W2337701009 hasConcept C135320971 @default.
- W2337701009 hasConcept C137631369 @default.
- W2337701009 hasConcept C154945302 @default.
- W2337701009 hasConcept C173404611 @default.
- W2337701009 hasConcept C173801870 @default.
- W2337701009 hasConcept C176783269 @default.
- W2337701009 hasConcept C185798385 @default.
- W2337701009 hasConcept C205649164 @default.
- W2337701009 hasConcept C33923547 @default.
- W2337701009 hasConcept C41008148 @default.
- W2337701009 hasConcept C62469222 @default.
- W2337701009 hasConcept C85617194 @default.
- W2337701009 hasConcept C8880873 @default.
- W2337701009 hasConceptScore W2337701009C109718341 @default.
- W2337701009 hasConceptScore W2337701009C11413529 @default.
- W2337701009 hasConceptScore W2337701009C122507166 @default.