Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337736412> ?p ?o ?g. }
- W2337736412 endingPage "74" @default.
- W2337736412 startingPage "66" @default.
- W2337736412 abstract "Abstract Self-aeration is traditionally explained by the water turbulent boundary layer outer edge intersection with the free surface. This paper presents a discussion on the commonly accepted hypothesis behind the computation of the critical point of self-aeration in spillway flows and a new formulation is proposed based on the existence of a developing air flow over the free surface. Upstream of the inception point of self-aeration, some surface roughening has been often reported in previous studies which consequently implies some entrapped air transport and air–water flows coupling. Such air flow is proven in this study by presenting measured air velocities and computing the air boundary layer thickness for a 1V:2H smooth chute flow. Additionally, the growth rate of free surface waves has been analysed by means of Ultrasonic Sensors measurements, obtaining also the entrapped air concentration. High-speed camera imaging has been used for qualitative study of the flow perturbations." @default.
- W2337736412 created "2016-06-24" @default.
- W2337736412 creator A5026631678 @default.
- W2337736412 creator A5031821417 @default.
- W2337736412 date "2016-09-01" @default.
- W2337736412 modified "2023-09-27" @default.
- W2337736412 title "Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows. Instabilities growth, entrapped air and influence on the self-aeration onset" @default.
- W2337736412 cites W1427992644 @default.
- W2337736412 cites W1975254478 @default.
- W2337736412 cites W1981683605 @default.
- W2337736412 cites W1988122634 @default.
- W2337736412 cites W1989805301 @default.
- W2337736412 cites W1990077491 @default.
- W2337736412 cites W1998878900 @default.
- W2337736412 cites W2006339122 @default.
- W2337736412 cites W2009749196 @default.
- W2337736412 cites W2015369177 @default.
- W2337736412 cites W2020301822 @default.
- W2337736412 cites W2026779121 @default.
- W2337736412 cites W2028123884 @default.
- W2337736412 cites W2034420071 @default.
- W2337736412 cites W2034964686 @default.
- W2337736412 cites W2042002153 @default.
- W2337736412 cites W2042804509 @default.
- W2337736412 cites W2044255490 @default.
- W2337736412 cites W2052804409 @default.
- W2337736412 cites W2056393580 @default.
- W2337736412 cites W2057622389 @default.
- W2337736412 cites W2059633865 @default.
- W2337736412 cites W2060105370 @default.
- W2337736412 cites W2062148198 @default.
- W2337736412 cites W2066035123 @default.
- W2337736412 cites W2067882160 @default.
- W2337736412 cites W2069905049 @default.
- W2337736412 cites W2081797143 @default.
- W2337736412 cites W2087929092 @default.
- W2337736412 cites W2091546038 @default.
- W2337736412 cites W2100454106 @default.
- W2337736412 cites W2107124243 @default.
- W2337736412 cites W2146229865 @default.
- W2337736412 cites W2149340420 @default.
- W2337736412 cites W2156380192 @default.
- W2337736412 cites W2156962543 @default.
- W2337736412 cites W2160180167 @default.
- W2337736412 cites W2170010381 @default.
- W2337736412 cites W2191538633 @default.
- W2337736412 cites W2212481972 @default.
- W2337736412 cites W2226195174 @default.
- W2337736412 cites W2230959919 @default.
- W2337736412 cites W2250324674 @default.
- W2337736412 cites W2303127989 @default.
- W2337736412 cites W2312389857 @default.
- W2337736412 cites W2342657267 @default.
- W2337736412 cites W2752392569 @default.
- W2337736412 cites W2943581119 @default.
- W2337736412 cites W3092143728 @default.
- W2337736412 cites W4232428914 @default.
- W2337736412 cites W4242072023 @default.
- W2337736412 cites W4253314122 @default.
- W2337736412 cites W918349272 @default.
- W2337736412 cites W925888557 @default.
- W2337736412 doi "https://doi.org/10.1016/j.ijmultiphaseflow.2016.04.012" @default.
- W2337736412 hasPublicationYear "2016" @default.
- W2337736412 type Work @default.
- W2337736412 sameAs 2337736412 @default.
- W2337736412 citedByCount "40" @default.
- W2337736412 countsByYear W23377364122016 @default.
- W2337736412 countsByYear W23377364122017 @default.
- W2337736412 countsByYear W23377364122018 @default.
- W2337736412 countsByYear W23377364122019 @default.
- W2337736412 countsByYear W23377364122020 @default.
- W2337736412 countsByYear W23377364122021 @default.
- W2337736412 countsByYear W23377364122022 @default.
- W2337736412 countsByYear W23377364122023 @default.
- W2337736412 crossrefType "journal-article" @default.
- W2337736412 hasAuthorship W2337736412A5026631678 @default.
- W2337736412 hasAuthorship W2337736412A5031821417 @default.
- W2337736412 hasConcept C121332964 @default.
- W2337736412 hasConcept C127313418 @default.
- W2337736412 hasConcept C171250308 @default.
- W2337736412 hasConcept C178790620 @default.
- W2337736412 hasConcept C185592680 @default.
- W2337736412 hasConcept C187320778 @default.
- W2337736412 hasConcept C192562407 @default.
- W2337736412 hasConcept C2779227376 @default.
- W2337736412 hasConcept C2779506771 @default.
- W2337736412 hasConcept C39432304 @default.
- W2337736412 hasConcept C57879066 @default.
- W2337736412 hasConcept C86922832 @default.
- W2337736412 hasConceptScore W2337736412C121332964 @default.
- W2337736412 hasConceptScore W2337736412C127313418 @default.
- W2337736412 hasConceptScore W2337736412C171250308 @default.
- W2337736412 hasConceptScore W2337736412C178790620 @default.
- W2337736412 hasConceptScore W2337736412C185592680 @default.
- W2337736412 hasConceptScore W2337736412C187320778 @default.
- W2337736412 hasConceptScore W2337736412C192562407 @default.
- W2337736412 hasConceptScore W2337736412C2779227376 @default.
- W2337736412 hasConceptScore W2337736412C2779506771 @default.