Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337803771> ?p ?o ?g. }
- W2337803771 endingPage "750" @default.
- W2337803771 startingPage "740" @default.
- W2337803771 abstract "In most studies correlating health outcomes with air pollution, personal exposure assignments are based on measurements collected at air-quality monitoring stations not coinciding with health data locations. In such cases, interpolators are needed to predict air quality in unsampled locations and to assign personal exposures. Moreover, a measure of the spatial uncertainty of exposures should be incorporated, especially in urban areas where concentrations vary at short distances due to changes in land use and pollution intensity. These studies are limited by the lack of literature comparing exposure uncertainty derived from distinct spatial interpolators. Here, we addressed these issues with two interpolation methods: regression Kriging (RK) and ordinary Kriging (OK). These methods were used to generate air-quality simulations with a geostatistical algorithm. For each method, the geostatistical uncertainty was drawn from generalized linear model (GLM) analysis. We analyzed the association between air quality and birth weight. Personal health data (n = 227) and exposure data were collected in Sines (Portugal) during 2007–2010. Because air-quality monitoring stations in the city do not offer high-spatial-resolution measurements (n = 1), we used lichen data as an ecological indicator of air quality (n = 83). We found no significant difference in the fit of GLMs with any of the geostatistical methods. With RK, however, the models tended to fit better more often and worse less often. Moreover, the geostatistical uncertainty results showed a marginally higher mean and precision with RK. Combined with lichen data and land-use data of high spatial resolution, RK is a more effective geostatistical method for relating health outcomes with air quality in urban areas. This is particularly important in small cities, which generally do not have expensive air-quality monitoring stations with high spatial resolution. Further, alternative ways of linking human activities with their environment are needed to improve human well-being." @default.
- W2337803771 created "2016-06-24" @default.
- W2337803771 creator A5017379592 @default.
- W2337803771 creator A5034579457 @default.
- W2337803771 creator A5051346880 @default.
- W2337803771 creator A5060798585 @default.
- W2337803771 creator A5060812607 @default.
- W2337803771 date "2016-08-01" @default.
- W2337803771 modified "2023-09-25" @default.
- W2337803771 title "Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal" @default.
- W2337803771 cites W1607239709 @default.
- W2337803771 cites W1949591994 @default.
- W2337803771 cites W1966827292 @default.
- W2337803771 cites W1968518510 @default.
- W2337803771 cites W1972589639 @default.
- W2337803771 cites W1981338304 @default.
- W2337803771 cites W1988935124 @default.
- W2337803771 cites W1991120291 @default.
- W2337803771 cites W1992296920 @default.
- W2337803771 cites W1992762522 @default.
- W2337803771 cites W1992825087 @default.
- W2337803771 cites W2002094444 @default.
- W2337803771 cites W2005029471 @default.
- W2337803771 cites W2006038625 @default.
- W2337803771 cites W2007873570 @default.
- W2337803771 cites W2034981949 @default.
- W2337803771 cites W2035403317 @default.
- W2337803771 cites W2035871099 @default.
- W2337803771 cites W2046182010 @default.
- W2337803771 cites W2051491322 @default.
- W2337803771 cites W2059643635 @default.
- W2337803771 cites W2062972123 @default.
- W2337803771 cites W2063303019 @default.
- W2337803771 cites W2065947772 @default.
- W2337803771 cites W2066978783 @default.
- W2337803771 cites W2072536256 @default.
- W2337803771 cites W2072620344 @default.
- W2337803771 cites W2073215590 @default.
- W2337803771 cites W2081239699 @default.
- W2337803771 cites W2082654355 @default.
- W2337803771 cites W2090371083 @default.
- W2337803771 cites W2095428025 @default.
- W2337803771 cites W2099123711 @default.
- W2337803771 cites W2101973401 @default.
- W2337803771 cites W2103206342 @default.
- W2337803771 cites W2111629953 @default.
- W2337803771 cites W2112688502 @default.
- W2337803771 cites W2140211778 @default.
- W2337803771 cites W2147351230 @default.
- W2337803771 cites W2155611782 @default.
- W2337803771 cites W2158822760 @default.
- W2337803771 cites W2496675188 @default.
- W2337803771 cites W4229562638 @default.
- W2337803771 cites W4255145138 @default.
- W2337803771 cites W581357030 @default.
- W2337803771 doi "https://doi.org/10.1016/j.scitotenv.2016.04.081" @default.
- W2337803771 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27110985" @default.
- W2337803771 hasPublicationYear "2016" @default.
- W2337803771 type Work @default.
- W2337803771 sameAs 2337803771 @default.
- W2337803771 citedByCount "24" @default.
- W2337803771 countsByYear W23378037712016 @default.
- W2337803771 countsByYear W23378037712017 @default.
- W2337803771 countsByYear W23378037712018 @default.
- W2337803771 countsByYear W23378037712019 @default.
- W2337803771 countsByYear W23378037712020 @default.
- W2337803771 countsByYear W23378037712021 @default.
- W2337803771 countsByYear W23378037712022 @default.
- W2337803771 countsByYear W23378037712023 @default.
- W2337803771 crossrefType "journal-article" @default.
- W2337803771 hasAuthorship W2337803771A5017379592 @default.
- W2337803771 hasAuthorship W2337803771A5034579457 @default.
- W2337803771 hasAuthorship W2337803771A5051346880 @default.
- W2337803771 hasAuthorship W2337803771A5060798585 @default.
- W2337803771 hasAuthorship W2337803771A5060812607 @default.
- W2337803771 hasConcept C105795698 @default.
- W2337803771 hasConcept C121684516 @default.
- W2337803771 hasConcept C125572338 @default.
- W2337803771 hasConcept C126314574 @default.
- W2337803771 hasConcept C137800194 @default.
- W2337803771 hasConcept C153294291 @default.
- W2337803771 hasConcept C159620131 @default.
- W2337803771 hasConcept C178790620 @default.
- W2337803771 hasConcept C185592680 @default.
- W2337803771 hasConcept C201052633 @default.
- W2337803771 hasConcept C203332170 @default.
- W2337803771 hasConcept C205203396 @default.
- W2337803771 hasConcept C205649164 @default.
- W2337803771 hasConcept C33923547 @default.
- W2337803771 hasConcept C39432304 @default.
- W2337803771 hasConcept C41008148 @default.
- W2337803771 hasConcept C48921125 @default.
- W2337803771 hasConcept C502989409 @default.
- W2337803771 hasConcept C559116025 @default.
- W2337803771 hasConcept C71924100 @default.
- W2337803771 hasConcept C81692654 @default.
- W2337803771 hasConcept C94747663 @default.
- W2337803771 hasConcept C99454951 @default.