Matches in SemOpenAlex for { <https://semopenalex.org/work/W2337842078> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2337842078 endingPage "293" @default.
- W2337842078 startingPage "278" @default.
- W2337842078 abstract "Summary Although principal-component analysis (PCA) has been widely applied to effectively reduce the number of parameters characterizing a reservoir, its disadvantages are well-recognized by researchers. First, PCA may distort the probability-distribution function (PDF) of the original model, especially for non-Gaussian properties such as facies indicator or permeability field of a fluvial reservoir. Second, it smears the boundaries between different facies. Therefore, the models reconstructed by traditional PCA are generally unacceptable. In this paper, a work flow is proposed to integrate cumulative-distribution-function (CDF) mapping with PCA (CDF/PCA) for assisted history matching on a two-facies channelized reservoir. The CDF/PCA is developed to reconstruct reservoir models by use of only a few hundred principal components. It inherits the advantage of PCA to capture the main features or trends of spatial correlations among properties, and more importantly, it can properly correct the smoothing effect of PCA. Integer variables such as facies indicators are regenerated by truncating their corresponding PCA results with thresholds that honor the fraction of each facies at first, and then real variables such as permeability and porosity are regenerated by mapping their corresponding PCA results to new values according to the CDF curves of different properties in different facies. Therefore, the models reconstructed by CDF/PCA preserve both geological (facies fraction) and geostatistical (non-Gaussian distribution with multipeaks) characteristics of their original or prior models. The CDF/PCA method is first applied to a real-field case with three facies to quantify the quality of the models reconstructed. Compared with the traditional PCA results, the integration of CDF-based mapping with PCA can significantly improve the quality of the reconstructed reservoir models. Results for the real-field case also reveal some limitations of the proposed CDF/PCA, especially when it is applied to reservoirs with three or more facies. Then, the CDF/PCA together with an effectively parallelized derivative-free optimization method is applied to history matching of a synthetic case with two facies. The geological facies, reservoir properties, and uncertainty characteristics of production forecasts of models reconstructed with CDF/PCA are well-consistent with those of the original models. Our results also demonstrate that the CDF/PCA is applicable for conditioning to both hard data and production data with minimal compromise of geological realism." @default.
- W2337842078 created "2016-06-24" @default.
- W2337842078 creator A5000888071 @default.
- W2337842078 creator A5012441761 @default.
- W2337842078 creator A5014487922 @default.
- W2337842078 creator A5046500433 @default.
- W2337842078 date "2016-03-09" @default.
- W2337842078 modified "2023-10-16" @default.
- W2337842078 title "Integration of Cumulative-Distribution-Function Mapping With Principal-Component Analysis for the History Matching of Channelized Reservoirs" @default.
- W2337842078 cites W1967892165 @default.
- W2337842078 cites W1970202449 @default.
- W2337842078 cites W1977401859 @default.
- W2337842078 cites W2004124997 @default.
- W2337842078 cites W2021841455 @default.
- W2337842078 cites W2024160253 @default.
- W2337842078 cites W2026436534 @default.
- W2337842078 cites W2028142523 @default.
- W2337842078 cites W2088439171 @default.
- W2337842078 doi "https://doi.org/10.2118/170636-pa" @default.
- W2337842078 hasPublicationYear "2016" @default.
- W2337842078 type Work @default.
- W2337842078 sameAs 2337842078 @default.
- W2337842078 citedByCount "10" @default.
- W2337842078 countsByYear W23378420782017 @default.
- W2337842078 countsByYear W23378420782018 @default.
- W2337842078 countsByYear W23378420782019 @default.
- W2337842078 countsByYear W23378420782020 @default.
- W2337842078 countsByYear W23378420782021 @default.
- W2337842078 countsByYear W23378420782023 @default.
- W2337842078 crossrefType "journal-article" @default.
- W2337842078 hasAuthorship W2337842078A5000888071 @default.
- W2337842078 hasAuthorship W2337842078A5012441761 @default.
- W2337842078 hasAuthorship W2337842078A5014487922 @default.
- W2337842078 hasAuthorship W2337842078A5046500433 @default.
- W2337842078 hasConcept C103784038 @default.
- W2337842078 hasConcept C105795698 @default.
- W2337842078 hasConcept C109007969 @default.
- W2337842078 hasConcept C114793014 @default.
- W2337842078 hasConcept C121332964 @default.
- W2337842078 hasConcept C127313418 @default.
- W2337842078 hasConcept C146588470 @default.
- W2337842078 hasConcept C153180895 @default.
- W2337842078 hasConcept C154945302 @default.
- W2337842078 hasConcept C163716315 @default.
- W2337842078 hasConcept C197055811 @default.
- W2337842078 hasConcept C27438332 @default.
- W2337842078 hasConcept C33923547 @default.
- W2337842078 hasConcept C3770464 @default.
- W2337842078 hasConcept C41008148 @default.
- W2337842078 hasConcept C51889082 @default.
- W2337842078 hasConcept C62520636 @default.
- W2337842078 hasConcept C76155785 @default.
- W2337842078 hasConceptScore W2337842078C103784038 @default.
- W2337842078 hasConceptScore W2337842078C105795698 @default.
- W2337842078 hasConceptScore W2337842078C109007969 @default.
- W2337842078 hasConceptScore W2337842078C114793014 @default.
- W2337842078 hasConceptScore W2337842078C121332964 @default.
- W2337842078 hasConceptScore W2337842078C127313418 @default.
- W2337842078 hasConceptScore W2337842078C146588470 @default.
- W2337842078 hasConceptScore W2337842078C153180895 @default.
- W2337842078 hasConceptScore W2337842078C154945302 @default.
- W2337842078 hasConceptScore W2337842078C163716315 @default.
- W2337842078 hasConceptScore W2337842078C197055811 @default.
- W2337842078 hasConceptScore W2337842078C27438332 @default.
- W2337842078 hasConceptScore W2337842078C33923547 @default.
- W2337842078 hasConceptScore W2337842078C3770464 @default.
- W2337842078 hasConceptScore W2337842078C41008148 @default.
- W2337842078 hasConceptScore W2337842078C51889082 @default.
- W2337842078 hasConceptScore W2337842078C62520636 @default.
- W2337842078 hasConceptScore W2337842078C76155785 @default.
- W2337842078 hasIssue "02" @default.
- W2337842078 hasLocation W23378420781 @default.
- W2337842078 hasOpenAccess W2337842078 @default.
- W2337842078 hasPrimaryLocation W23378420781 @default.
- W2337842078 hasRelatedWork W2058588668 @default.
- W2337842078 hasRelatedWork W2085553065 @default.
- W2337842078 hasRelatedWork W2094358292 @default.
- W2337842078 hasRelatedWork W2147478239 @default.
- W2337842078 hasRelatedWork W2380927352 @default.
- W2337842078 hasRelatedWork W2595561582 @default.
- W2337842078 hasRelatedWork W3048981730 @default.
- W2337842078 hasRelatedWork W3178621026 @default.
- W2337842078 hasRelatedWork W4211209597 @default.
- W2337842078 hasRelatedWork W2137598809 @default.
- W2337842078 hasVolume "19" @default.
- W2337842078 isParatext "false" @default.
- W2337842078 isRetracted "false" @default.
- W2337842078 magId "2337842078" @default.
- W2337842078 workType "article" @default.