Matches in SemOpenAlex for { <https://semopenalex.org/work/W2338051625> ?p ?o ?g. }
- W2338051625 endingPage "6" @default.
- W2338051625 startingPage "1" @default.
- W2338051625 abstract "Brain MRI holds promise to gauge different aspects of Parkinson’s disease (PD)-related pathological changes. Its analysis, however, is hindered by the high-dimensional nature of the data. This study introduces folded concave penalized (FCP) sparse logistic regression to identify biomarkers for PD from a large number of potential factors. The proposed statistical procedures target the challenges of high-dimensionality with limited data samples acquired. The maximization problem associated with the sparse logistic regression model is solved by local linear approximation. The proposed procedures then are applied to the empirical analysis of multimodal MRI data. From 45 features, the proposed approach identified 15 MRI markers and the UPSIT, which are known to be clinically relevant to PD. By combining the MRI and clinical markers, we can enhance substantially the specificity and sensitivity of the model, as indicated by the ROC curves. We compare the folded concave penalized learning scheme with both the Lasso penalized scheme and the principle component analysis-based feature selection (PCA) in the Parkinson’s biomarker identification problem that takes into account both the clinical features and MRI markers. The folded concave penalty method demonstrates a substantially better clinical potential than both the Lasso and PCA in terms of specificity and sensitivity. For the first time, we applied the FCP learning method to MRI biomarker discovery in PD. The proposed approach successfully identified MRI markers that are clinically relevant. Combining these biomarkers with clinical features can substantially enhance performance." @default.
- W2338051625 created "2016-06-24" @default.
- W2338051625 creator A5013155941 @default.
- W2338051625 creator A5016755979 @default.
- W2338051625 creator A5024470069 @default.
- W2338051625 creator A5031819552 @default.
- W2338051625 creator A5059723521 @default.
- W2338051625 creator A5065172118 @default.
- W2338051625 creator A5081589298 @default.
- W2338051625 creator A5087945394 @default.
- W2338051625 date "2016-08-01" @default.
- W2338051625 modified "2023-10-14" @default.
- W2338051625 title "Folded concave penalized learning in identifying multimodal MRI marker for Parkinson’s disease" @default.
- W2338051625 cites W1965125844 @default.
- W2338051625 cites W1970928383 @default.
- W2338051625 cites W1974746689 @default.
- W2338051625 cites W1975004696 @default.
- W2338051625 cites W1986014162 @default.
- W2338051625 cites W1999385317 @default.
- W2338051625 cites W2009761203 @default.
- W2338051625 cites W2020925091 @default.
- W2338051625 cites W2031734591 @default.
- W2338051625 cites W2036197503 @default.
- W2338051625 cites W2039431368 @default.
- W2338051625 cites W2056145524 @default.
- W2338051625 cites W2074682976 @default.
- W2338051625 cites W2076886572 @default.
- W2338051625 cites W2092634008 @default.
- W2338051625 cites W2098704159 @default.
- W2338051625 cites W2107564884 @default.
- W2338051625 cites W2109408008 @default.
- W2338051625 cites W2116581043 @default.
- W2338051625 cites W2118872355 @default.
- W2338051625 cites W2127300249 @default.
- W2338051625 cites W2129554161 @default.
- W2338051625 cites W2130395838 @default.
- W2338051625 cites W2133593515 @default.
- W2338051625 cites W2169499022 @default.
- W2338051625 cites W3098834468 @default.
- W2338051625 cites W3100041486 @default.
- W2338051625 cites W3101040439 @default.
- W2338051625 cites W3102942031 @default.
- W2338051625 cites W3106266785 @default.
- W2338051625 doi "https://doi.org/10.1016/j.jneumeth.2016.04.016" @default.
- W2338051625 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4913043" @default.
- W2338051625 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27102045" @default.
- W2338051625 hasPublicationYear "2016" @default.
- W2338051625 type Work @default.
- W2338051625 sameAs 2338051625 @default.
- W2338051625 citedByCount "14" @default.
- W2338051625 countsByYear W23380516252017 @default.
- W2338051625 countsByYear W23380516252018 @default.
- W2338051625 countsByYear W23380516252019 @default.
- W2338051625 countsByYear W23380516252020 @default.
- W2338051625 countsByYear W23380516252021 @default.
- W2338051625 countsByYear W23380516252022 @default.
- W2338051625 crossrefType "journal-article" @default.
- W2338051625 hasAuthorship W2338051625A5013155941 @default.
- W2338051625 hasAuthorship W2338051625A5016755979 @default.
- W2338051625 hasAuthorship W2338051625A5024470069 @default.
- W2338051625 hasAuthorship W2338051625A5031819552 @default.
- W2338051625 hasAuthorship W2338051625A5059723521 @default.
- W2338051625 hasAuthorship W2338051625A5065172118 @default.
- W2338051625 hasAuthorship W2338051625A5081589298 @default.
- W2338051625 hasAuthorship W2338051625A5087945394 @default.
- W2338051625 hasBestOaLocation W23380516251 @default.
- W2338051625 hasConcept C119857082 @default.
- W2338051625 hasConcept C127413603 @default.
- W2338051625 hasConcept C136764020 @default.
- W2338051625 hasConcept C148483581 @default.
- W2338051625 hasConcept C151956035 @default.
- W2338051625 hasConcept C153180895 @default.
- W2338051625 hasConcept C154945302 @default.
- W2338051625 hasConcept C21200559 @default.
- W2338051625 hasConcept C24326235 @default.
- W2338051625 hasConcept C27438332 @default.
- W2338051625 hasConcept C2781197716 @default.
- W2338051625 hasConcept C33923547 @default.
- W2338051625 hasConcept C37616216 @default.
- W2338051625 hasConcept C41008148 @default.
- W2338051625 hasConcept C55493867 @default.
- W2338051625 hasConcept C86803240 @default.
- W2338051625 hasConceptScore W2338051625C119857082 @default.
- W2338051625 hasConceptScore W2338051625C127413603 @default.
- W2338051625 hasConceptScore W2338051625C136764020 @default.
- W2338051625 hasConceptScore W2338051625C148483581 @default.
- W2338051625 hasConceptScore W2338051625C151956035 @default.
- W2338051625 hasConceptScore W2338051625C153180895 @default.
- W2338051625 hasConceptScore W2338051625C154945302 @default.
- W2338051625 hasConceptScore W2338051625C21200559 @default.
- W2338051625 hasConceptScore W2338051625C24326235 @default.
- W2338051625 hasConceptScore W2338051625C27438332 @default.
- W2338051625 hasConceptScore W2338051625C2781197716 @default.
- W2338051625 hasConceptScore W2338051625C33923547 @default.
- W2338051625 hasConceptScore W2338051625C37616216 @default.
- W2338051625 hasConceptScore W2338051625C41008148 @default.
- W2338051625 hasConceptScore W2338051625C55493867 @default.
- W2338051625 hasConceptScore W2338051625C86803240 @default.