Matches in SemOpenAlex for { <https://semopenalex.org/work/W2338303876> ?p ?o ?g. }
- W2338303876 abstract "Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. Mammography is currently the primary method of early detection. But recent research has shown that many cases missed by mammography can be detected in Breast DCE-MRI. Magnetic Resonance (MR) imaging is emerging as the most sensitive modality that is currently available for the detection of primary or recurrent breast cancer. Breast DCE-MRI is more effective than mammography, because it generates much more data. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the diagnosis of breast abnormalities. Computer Aided Detection (CAD) is of great help to this situation and image segmentation is most important process of computer Aided Detection, Magnetic Resonance Imaging data are a major challenge to any image processing software because of the huge amount of image voxels. Automatic approaches to breast cancer detection can help radiologists in this hard task and speed up the inspection process. To segment the mass of the breast region from 3D MRI set, a multistage image processing procedure was proposed. Data acquisition, processing and visualization techniques facilitate diagnosis. Image segmentation is an established necessity for an improved analysis of Magnetic Resonance (MR) images. Segmentation from MR images may aid in tumor treatment by tracking the progress of tumor growth and shrinkage. The advantages of Magnetic Resonance Imaging are that the spatial resolution is high and provides detailed images. The tumor segmentation in Breast MRI image is difficult due to the complicated galactophore structure. The work in this paper attempts to accurately segment the abnormal breast mass in DCEMRI Images. The mass is segmented using a novel clustering algorithm based on unsupervised segmentation, through neural network techniques, of an optimized space in which to perform clustering. The effectiveness of the proposed technique is determined by the extent to which potential abnormalities can be extracted from corresponding breast MRI based on its analysis, this algorithm also proposes changes that could reduce this error," @default.
- W2338303876 created "2016-06-24" @default.
- W2338303876 creator A5025227119 @default.
- W2338303876 creator A5043811576 @default.
- W2338303876 date "2011-01-01" @default.
- W2338303876 modified "2023-09-27" @default.
- W2338303876 title "Development of CAD System Based on Enhanced Clustering Based Segmentation Algorithm for Detection of Masses in Breast DCE-MRI" @default.
- W2338303876 cites W1493775511 @default.
- W2338303876 cites W1525141767 @default.
- W2338303876 cites W1528874924 @default.
- W2338303876 cites W1568133705 @default.
- W2338303876 cites W1625605820 @default.
- W2338303876 cites W1830068004 @default.
- W2338303876 cites W1966312686 @default.
- W2338303876 cites W1975891294 @default.
- W2338303876 cites W1985940145 @default.
- W2338303876 cites W1995302263 @default.
- W2338303876 cites W1996903721 @default.
- W2338303876 cites W2005814255 @default.
- W2338303876 cites W2008813116 @default.
- W2338303876 cites W2032515605 @default.
- W2338303876 cites W2037206845 @default.
- W2338303876 cites W2040064469 @default.
- W2338303876 cites W2044039954 @default.
- W2338303876 cites W2048477847 @default.
- W2338303876 cites W2048712324 @default.
- W2338303876 cites W2050883594 @default.
- W2338303876 cites W2061138960 @default.
- W2338303876 cites W2069610368 @default.
- W2338303876 cites W2076608722 @default.
- W2338303876 cites W207905448 @default.
- W2338303876 cites W2104950676 @default.
- W2338303876 cites W2107920575 @default.
- W2338303876 cites W2111928952 @default.
- W2338303876 cites W2124503759 @default.
- W2338303876 cites W2126478259 @default.
- W2338303876 cites W2140804420 @default.
- W2338303876 cites W2141619730 @default.
- W2338303876 cites W2143617954 @default.
- W2338303876 cites W2160172739 @default.
- W2338303876 cites W2162630772 @default.
- W2338303876 cites W2505650381 @default.
- W2338303876 cites W2615412239 @default.
- W2338303876 cites W1539360628 @default.
- W2338303876 hasPublicationYear "2011" @default.
- W2338303876 type Work @default.
- W2338303876 sameAs 2338303876 @default.
- W2338303876 citedByCount "2" @default.
- W2338303876 countsByYear W23383038762013 @default.
- W2338303876 crossrefType "journal-article" @default.
- W2338303876 hasAuthorship W2338303876A5025227119 @default.
- W2338303876 hasAuthorship W2338303876A5043811576 @default.
- W2338303876 hasConcept C115961682 @default.
- W2338303876 hasConcept C121608353 @default.
- W2338303876 hasConcept C124504099 @default.
- W2338303876 hasConcept C126322002 @default.
- W2338303876 hasConcept C126838900 @default.
- W2338303876 hasConcept C127413603 @default.
- W2338303876 hasConcept C143409427 @default.
- W2338303876 hasConcept C154945302 @default.
- W2338303876 hasConcept C157787499 @default.
- W2338303876 hasConcept C194789388 @default.
- W2338303876 hasConcept C199639397 @default.
- W2338303876 hasConcept C2777111374 @default.
- W2338303876 hasConcept C2779549770 @default.
- W2338303876 hasConcept C2780472235 @default.
- W2338303876 hasConcept C31972630 @default.
- W2338303876 hasConcept C41008148 @default.
- W2338303876 hasConcept C530470458 @default.
- W2338303876 hasConcept C54170458 @default.
- W2338303876 hasConcept C71924100 @default.
- W2338303876 hasConcept C73555534 @default.
- W2338303876 hasConcept C89600930 @default.
- W2338303876 hasConcept C9417928 @default.
- W2338303876 hasConceptScore W2338303876C115961682 @default.
- W2338303876 hasConceptScore W2338303876C121608353 @default.
- W2338303876 hasConceptScore W2338303876C124504099 @default.
- W2338303876 hasConceptScore W2338303876C126322002 @default.
- W2338303876 hasConceptScore W2338303876C126838900 @default.
- W2338303876 hasConceptScore W2338303876C127413603 @default.
- W2338303876 hasConceptScore W2338303876C143409427 @default.
- W2338303876 hasConceptScore W2338303876C154945302 @default.
- W2338303876 hasConceptScore W2338303876C157787499 @default.
- W2338303876 hasConceptScore W2338303876C194789388 @default.
- W2338303876 hasConceptScore W2338303876C199639397 @default.
- W2338303876 hasConceptScore W2338303876C2777111374 @default.
- W2338303876 hasConceptScore W2338303876C2779549770 @default.
- W2338303876 hasConceptScore W2338303876C2780472235 @default.
- W2338303876 hasConceptScore W2338303876C31972630 @default.
- W2338303876 hasConceptScore W2338303876C41008148 @default.
- W2338303876 hasConceptScore W2338303876C530470458 @default.
- W2338303876 hasConceptScore W2338303876C54170458 @default.
- W2338303876 hasConceptScore W2338303876C71924100 @default.
- W2338303876 hasConceptScore W2338303876C73555534 @default.
- W2338303876 hasConceptScore W2338303876C89600930 @default.
- W2338303876 hasConceptScore W2338303876C9417928 @default.
- W2338303876 hasLocation W23383038761 @default.
- W2338303876 hasOpenAccess W2338303876 @default.
- W2338303876 hasPrimaryLocation W23383038761 @default.
- W2338303876 hasRelatedWork W1672906986 @default.