Matches in SemOpenAlex for { <https://semopenalex.org/work/W2338443192> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2338443192 endingPage "227" @default.
- W2338443192 startingPage "222" @default.
- W2338443192 abstract "Abstract District heating systems are important utility systems. If these systems are properly managed, they can ensure economic and environmental friendly provision of heat to connected customers. Potentials for further improvement of district heating systems’ operation lie in improvement of present control strategies. One of the options is introduction of model predictive control. Multistep ahead predictive models of consumers’ heat load are starting point for creating successful model predictive strategy. In this article, short-term, multistep ahead predictive models of heat load of consumer attached to district heating system were created. Models were developed using the novel method based on Extreme Learning Machine (ELM). Nine different ELM predictive models, for time horizon from 1 to 24 h ahead, were developed. Estimation and prediction results of ELM models were compared with genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ELM approach in comparison with GP and ANN. Moreover, achieved results indicate that developed ELM models can be used with confidence for further work on formulating novel model predictive strategy in district heating systems. The experimental results show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms." @default.
- W2338443192 created "2016-06-24" @default.
- W2338443192 creator A5003091988 @default.
- W2338443192 creator A5009073173 @default.
- W2338443192 creator A5018992272 @default.
- W2338443192 creator A5051973071 @default.
- W2338443192 creator A5056139769 @default.
- W2338443192 creator A5071517100 @default.
- W2338443192 creator A5086504559 @default.
- W2338443192 creator A5086550972 @default.
- W2338443192 date "2016-06-01" @default.
- W2338443192 modified "2023-10-02" @default.
- W2338443192 title "Extreme learning machine for prediction of heat load in district heating systems" @default.
- W2338443192 cites W1124861640 @default.
- W2338443192 cites W1977127140 @default.
- W2338443192 cites W1979246223 @default.
- W2338443192 cites W1989949705 @default.
- W2338443192 cites W2005757740 @default.
- W2338443192 cites W2012157524 @default.
- W2338443192 cites W2036946577 @default.
- W2338443192 cites W2048110349 @default.
- W2338443192 cites W2059776567 @default.
- W2338443192 cites W2063143152 @default.
- W2338443192 cites W2075262341 @default.
- W2338443192 cites W2081381287 @default.
- W2338443192 cites W2111072639 @default.
- W2338443192 cites W2283737367 @default.
- W2338443192 doi "https://doi.org/10.1016/j.enbuild.2016.04.021" @default.
- W2338443192 hasPublicationYear "2016" @default.
- W2338443192 type Work @default.
- W2338443192 sameAs 2338443192 @default.
- W2338443192 citedByCount "101" @default.
- W2338443192 countsByYear W23384431922016 @default.
- W2338443192 countsByYear W23384431922017 @default.
- W2338443192 countsByYear W23384431922018 @default.
- W2338443192 countsByYear W23384431922019 @default.
- W2338443192 countsByYear W23384431922020 @default.
- W2338443192 countsByYear W23384431922021 @default.
- W2338443192 countsByYear W23384431922022 @default.
- W2338443192 countsByYear W23384431922023 @default.
- W2338443192 crossrefType "journal-article" @default.
- W2338443192 hasAuthorship W2338443192A5003091988 @default.
- W2338443192 hasAuthorship W2338443192A5009073173 @default.
- W2338443192 hasAuthorship W2338443192A5018992272 @default.
- W2338443192 hasAuthorship W2338443192A5051973071 @default.
- W2338443192 hasAuthorship W2338443192A5056139769 @default.
- W2338443192 hasAuthorship W2338443192A5071517100 @default.
- W2338443192 hasAuthorship W2338443192A5086504559 @default.
- W2338443192 hasAuthorship W2338443192A5086550972 @default.
- W2338443192 hasConcept C111368507 @default.
- W2338443192 hasConcept C116915560 @default.
- W2338443192 hasConcept C119857082 @default.
- W2338443192 hasConcept C121332964 @default.
- W2338443192 hasConcept C127313418 @default.
- W2338443192 hasConcept C127413603 @default.
- W2338443192 hasConcept C132651083 @default.
- W2338443192 hasConcept C2780150128 @default.
- W2338443192 hasConcept C2989353520 @default.
- W2338443192 hasConcept C2993190167 @default.
- W2338443192 hasConcept C39432304 @default.
- W2338443192 hasConcept C41008148 @default.
- W2338443192 hasConcept C50644808 @default.
- W2338443192 hasConcept C97355855 @default.
- W2338443192 hasConceptScore W2338443192C111368507 @default.
- W2338443192 hasConceptScore W2338443192C116915560 @default.
- W2338443192 hasConceptScore W2338443192C119857082 @default.
- W2338443192 hasConceptScore W2338443192C121332964 @default.
- W2338443192 hasConceptScore W2338443192C127313418 @default.
- W2338443192 hasConceptScore W2338443192C127413603 @default.
- W2338443192 hasConceptScore W2338443192C132651083 @default.
- W2338443192 hasConceptScore W2338443192C2780150128 @default.
- W2338443192 hasConceptScore W2338443192C2989353520 @default.
- W2338443192 hasConceptScore W2338443192C2993190167 @default.
- W2338443192 hasConceptScore W2338443192C39432304 @default.
- W2338443192 hasConceptScore W2338443192C41008148 @default.
- W2338443192 hasConceptScore W2338443192C50644808 @default.
- W2338443192 hasConceptScore W2338443192C97355855 @default.
- W2338443192 hasLocation W23384431921 @default.
- W2338443192 hasOpenAccess W2338443192 @default.
- W2338443192 hasPrimaryLocation W23384431921 @default.
- W2338443192 hasRelatedWork W2031041969 @default.
- W2338443192 hasRelatedWork W2051854463 @default.
- W2338443192 hasRelatedWork W2338443192 @default.
- W2338443192 hasRelatedWork W2411489059 @default.
- W2338443192 hasRelatedWork W2626285892 @default.
- W2338443192 hasRelatedWork W2899084033 @default.
- W2338443192 hasRelatedWork W2969890106 @default.
- W2338443192 hasRelatedWork W3134233996 @default.
- W2338443192 hasRelatedWork W4200608505 @default.
- W2338443192 hasRelatedWork W4256035189 @default.
- W2338443192 hasVolume "122" @default.
- W2338443192 isParatext "false" @default.
- W2338443192 isRetracted "false" @default.
- W2338443192 magId "2338443192" @default.
- W2338443192 workType "article" @default.