Matches in SemOpenAlex for { <https://semopenalex.org/work/W2339449917> ?p ?o ?g. }
- W2339449917 endingPage "847" @default.
- W2339449917 startingPage "837" @default.
- W2339449917 abstract "Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r2 = 0.66, P < .001; r2 = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r2 = 0.73, P < .001) and trochanteric BMD (r2 = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r2 = 0.78, P < .001; r2 = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. © RSNA, 2016 Online supplemental material is available for this article." @default.
- W2339449917 created "2016-06-24" @default.
- W2339449917 creator A5003931348 @default.
- W2339449917 creator A5021221380 @default.
- W2339449917 creator A5044785006 @default.
- W2339449917 creator A5051192832 @default.
- W2339449917 creator A5053239745 @default.
- W2339449917 creator A5077286819 @default.
- W2339449917 creator A5078759533 @default.
- W2339449917 creator A5083591924 @default.
- W2339449917 creator A5088096181 @default.
- W2339449917 creator A5089488337 @default.
- W2339449917 creator A5091603719 @default.
- W2339449917 date "2016-09-01" @default.
- W2339449917 modified "2023-10-13" @default.
- W2339449917 title "Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models—The European Fracture Study (EFFECT)" @default.
- W2339449917 cites W1964678256 @default.
- W2339449917 cites W1971100312 @default.
- W2339449917 cites W1982860294 @default.
- W2339449917 cites W1983023120 @default.
- W2339449917 cites W1985184665 @default.
- W2339449917 cites W2003733543 @default.
- W2339449917 cites W2008401748 @default.
- W2339449917 cites W2011570224 @default.
- W2339449917 cites W2013745320 @default.
- W2339449917 cites W2017904740 @default.
- W2339449917 cites W2027148835 @default.
- W2339449917 cites W2027575875 @default.
- W2339449917 cites W2032189326 @default.
- W2339449917 cites W2033898530 @default.
- W2339449917 cites W2034896755 @default.
- W2339449917 cites W2047465431 @default.
- W2339449917 cites W2050666211 @default.
- W2339449917 cites W2056907210 @default.
- W2339449917 cites W2060086874 @default.
- W2339449917 cites W2060431982 @default.
- W2339449917 cites W2062206303 @default.
- W2339449917 cites W2065231653 @default.
- W2339449917 cites W2068025211 @default.
- W2339449917 cites W2068947159 @default.
- W2339449917 cites W2079949733 @default.
- W2339449917 cites W2082020032 @default.
- W2339449917 cites W2085479146 @default.
- W2339449917 cites W2091163042 @default.
- W2339449917 cites W2108063837 @default.
- W2339449917 cites W2108824264 @default.
- W2339449917 cites W2117369607 @default.
- W2339449917 cites W2134448597 @default.
- W2339449917 cites W2140549584 @default.
- W2339449917 cites W2142635246 @default.
- W2339449917 cites W2145069783 @default.
- W2339449917 cites W2147773269 @default.
- W2339449917 cites W2150752239 @default.
- W2339449917 doi "https://doi.org/10.1148/radiol.2016142796" @default.
- W2339449917 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27077380" @default.
- W2339449917 hasPublicationYear "2016" @default.
- W2339449917 type Work @default.
- W2339449917 sameAs 2339449917 @default.
- W2339449917 citedByCount "36" @default.
- W2339449917 countsByYear W23394499172017 @default.
- W2339449917 countsByYear W23394499172018 @default.
- W2339449917 countsByYear W23394499172019 @default.
- W2339449917 countsByYear W23394499172020 @default.
- W2339449917 countsByYear W23394499172021 @default.
- W2339449917 countsByYear W23394499172022 @default.
- W2339449917 countsByYear W23394499172023 @default.
- W2339449917 crossrefType "journal-article" @default.
- W2339449917 hasAuthorship W2339449917A5003931348 @default.
- W2339449917 hasAuthorship W2339449917A5021221380 @default.
- W2339449917 hasAuthorship W2339449917A5044785006 @default.
- W2339449917 hasAuthorship W2339449917A5051192832 @default.
- W2339449917 hasAuthorship W2339449917A5053239745 @default.
- W2339449917 hasAuthorship W2339449917A5077286819 @default.
- W2339449917 hasAuthorship W2339449917A5078759533 @default.
- W2339449917 hasAuthorship W2339449917A5083591924 @default.
- W2339449917 hasAuthorship W2339449917A5088096181 @default.
- W2339449917 hasAuthorship W2339449917A5089488337 @default.
- W2339449917 hasAuthorship W2339449917A5091603719 @default.
- W2339449917 hasBestOaLocation W23394499171 @default.
- W2339449917 hasConcept C126838900 @default.
- W2339449917 hasConcept C127413603 @default.
- W2339449917 hasConcept C134018914 @default.
- W2339449917 hasConcept C135628077 @default.
- W2339449917 hasConcept C141071460 @default.
- W2339449917 hasConcept C2776541429 @default.
- W2339449917 hasConcept C2776886416 @default.
- W2339449917 hasConcept C2777425516 @default.
- W2339449917 hasConcept C2780051367 @default.
- W2339449917 hasConcept C2780554211 @default.
- W2339449917 hasConcept C29694066 @default.
- W2339449917 hasConcept C2989005 @default.
- W2339449917 hasConcept C36454342 @default.
- W2339449917 hasConcept C66938386 @default.
- W2339449917 hasConcept C71924100 @default.
- W2339449917 hasConcept C91762617 @default.
- W2339449917 hasConceptScore W2339449917C126838900 @default.
- W2339449917 hasConceptScore W2339449917C127413603 @default.
- W2339449917 hasConceptScore W2339449917C134018914 @default.