Matches in SemOpenAlex for { <https://semopenalex.org/work/W2339929072> ?p ?o ?g. }
- W2339929072 endingPage "222" @default.
- W2339929072 startingPage "205" @default.
- W2339929072 abstract "AEI Aquaculture Environment Interactions Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections AEI 7:205-222 (2015) - DOI: https://doi.org/10.3354/aei00151 Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes Jeremy M. Testa1,*, Damian C. Brady2, Jeffrey C. Cornwell3, Michael S. Owens3, Lawrence P. Sanford3, Carter R. Newell4, Steven E. Suttles3, Roger I. E. Newell3 1Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, PO Box 38, Solomons, MD 20688, USA 2School of Marine Sciences, University of Maine, 193 Clark Cove Road, Walpole, ME 04573, USA 3Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 20613, USA 4Maine Shellfish R&D, 7 Creek Lane, Damariscotta, ME 04543, USA *Corresponding author: jtesta@umces.edu ABSTRACT: Bivalve aquaculture relies on naturally occurring phytoplankton, zooplankton, and detritus as food sources, thereby avoiding external nutrient inputs that are commonly associated with finfish aquaculture. High filtration rates and concentrated bivalve biomass within aquaculture operations, however, result in intense biodeposition of particulate organic matter (POM) on surrounding sediments, with potential adverse environmental impacts. Estimating the net depositional flux is difficult in shallow waters due to methodological constraints and dynamic processes such as resuspension and advection. In this study, we combined sediment trap deployments with simulations from a mechanistic sediment flux model to estimate seasonal POM deposition, resuspension, and processing within sediments in the vicinity of an eastern oyster Crassostrea virginica farm in the Choptank River, Maryland, USA. The model is the stand-alone version of a 2-layer sediment flux model currently implemented within larger models for understanding ecosystem responses to nutrient management. Modeled sediment-water fluxes were compared to observed denitrification rates and nitrite + nitrate (NO2-+NO3-), phosphate (PO43-) and dissolved O2 fluxes. Model-derived estimates of POM deposition, which represent POM incorporated and processed within the sediment, comprised a small fraction of the material collected in sediment traps. These results highlight the roles of biodeposit resuspension and transport in effectively removing oyster biodeposits away from this particular farm, resulting in a highly diminished local environmental impact. This study highlights the value of sediment models as a practical tool for computing integrated measures of nitrogen cycling as a function of seasonal dynamics in the vicinity of aquaculture operations. KEY WORDS: Biogeochemistry · Nutrient cycling · Oyster · Modeling · Sediments · Biodeposition Full text in pdf format PreviousNextCite this article as: Testa JM, Brady DC, Cornwell JC, Owens MS and others (2015) Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes. Aquacult Environ Interact 7:205-222. https://doi.org/10.3354/aei00151 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AEI Vol. 7, No. 3. Online publication date: October 21, 2015 Print ISSN: 1869-215X; Online ISSN: 1869-7534 Copyright © 2015 Inter-Research." @default.
- W2339929072 created "2016-06-24" @default.
- W2339929072 creator A5009048719 @default.
- W2339929072 creator A5024567785 @default.
- W2339929072 creator A5039545769 @default.
- W2339929072 creator A5042087707 @default.
- W2339929072 creator A5045602542 @default.
- W2339929072 creator A5053069268 @default.
- W2339929072 creator A5056680950 @default.
- W2339929072 creator A5080838817 @default.
- W2339929072 date "2015-10-21" @default.
- W2339929072 modified "2023-10-13" @default.
- W2339929072 title "Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes" @default.
- W2339929072 cites W1500800767 @default.
- W2339929072 cites W1515670541 @default.
- W2339929072 cites W1895136408 @default.
- W2339929072 cites W1967378188 @default.
- W2339929072 cites W1967733501 @default.
- W2339929072 cites W1969601666 @default.
- W2339929072 cites W1976616432 @default.
- W2339929072 cites W1984285086 @default.
- W2339929072 cites W1988608492 @default.
- W2339929072 cites W1990866463 @default.
- W2339929072 cites W1998954638 @default.
- W2339929072 cites W2002069948 @default.
- W2339929072 cites W2006874401 @default.
- W2339929072 cites W2008261617 @default.
- W2339929072 cites W2011475971 @default.
- W2339929072 cites W2012974465 @default.
- W2339929072 cites W2020044308 @default.
- W2339929072 cites W2021606652 @default.
- W2339929072 cites W2028827642 @default.
- W2339929072 cites W2031643204 @default.
- W2339929072 cites W2032500130 @default.
- W2339929072 cites W2036462019 @default.
- W2339929072 cites W2040456515 @default.
- W2339929072 cites W2040520511 @default.
- W2339929072 cites W2044299355 @default.
- W2339929072 cites W2061429553 @default.
- W2339929072 cites W2076083974 @default.
- W2339929072 cites W2082640792 @default.
- W2339929072 cites W2085192177 @default.
- W2339929072 cites W2089490929 @default.
- W2339929072 cites W2095632391 @default.
- W2339929072 cites W2102942560 @default.
- W2339929072 cites W2103511709 @default.
- W2339929072 cites W2110570776 @default.
- W2339929072 cites W2114797059 @default.
- W2339929072 cites W2117712043 @default.
- W2339929072 cites W2121382521 @default.
- W2339929072 cites W2124640583 @default.
- W2339929072 cites W2127536995 @default.
- W2339929072 cites W2130703093 @default.
- W2339929072 cites W2140383849 @default.
- W2339929072 cites W2152330365 @default.
- W2339929072 cites W2152710595 @default.
- W2339929072 cites W2154378966 @default.
- W2339929072 cites W2163639290 @default.
- W2339929072 cites W2166141173 @default.
- W2339929072 cites W2168622235 @default.
- W2339929072 cites W2169503277 @default.
- W2339929072 cites W29141956 @default.
- W2339929072 cites W4240335892 @default.
- W2339929072 cites W857565317 @default.
- W2339929072 doi "https://doi.org/10.3354/aei00151" @default.
- W2339929072 hasPublicationYear "2015" @default.
- W2339929072 type Work @default.
- W2339929072 sameAs 2339929072 @default.
- W2339929072 citedByCount "31" @default.
- W2339929072 countsByYear W23399290722017 @default.
- W2339929072 countsByYear W23399290722018 @default.
- W2339929072 countsByYear W23399290722019 @default.
- W2339929072 countsByYear W23399290722020 @default.
- W2339929072 countsByYear W23399290722021 @default.
- W2339929072 countsByYear W23399290722022 @default.
- W2339929072 countsByYear W23399290722023 @default.
- W2339929072 crossrefType "journal-article" @default.
- W2339929072 hasAuthorship W2339929072A5009048719 @default.
- W2339929072 hasAuthorship W2339929072A5024567785 @default.
- W2339929072 hasAuthorship W2339929072A5039545769 @default.
- W2339929072 hasAuthorship W2339929072A5042087707 @default.
- W2339929072 hasAuthorship W2339929072A5045602542 @default.
- W2339929072 hasAuthorship W2339929072A5053069268 @default.
- W2339929072 hasAuthorship W2339929072A5056680950 @default.
- W2339929072 hasAuthorship W2339929072A5080838817 @default.
- W2339929072 hasBestOaLocation W23399290721 @default.
- W2339929072 hasConcept C111368507 @default.
- W2339929072 hasConcept C114793014 @default.
- W2339929072 hasConcept C122846477 @default.
- W2339929072 hasConcept C127313418 @default.
- W2339929072 hasConcept C142796444 @default.
- W2339929072 hasConcept C151730666 @default.
- W2339929072 hasConcept C168074166 @default.
- W2339929072 hasConcept C18903297 @default.
- W2339929072 hasConcept C2776364969 @default.
- W2339929072 hasConcept C2776845067 @default.
- W2339929072 hasConcept C2780892065 @default.
- W2339929072 hasConcept C2816523 @default.