Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340162385> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2340162385 abstract "We outline a proof of a geometric version of the Satake isomorphism. Given a connected, complex algebraic reductive group G we show that the tensor category of representations of the dual group $check G$ is naturally equivalent to a certain category of perverse sheaves on the loop Grassmannian of G. The above result has been announced by Ginsburg in cite{G} and some of the arguments are borrowed from cite{G}. However, we use a more natural commutativity constraint for the convolution product, due to Drinfeld. Secondly, we give a direct geometric proof that the global cohomology functor is exact and decompose this cohomology functor into a direct sum of weights. We avoid the use of the decomposition theorem of cite{BBD} which makes our techniques applicable to perverse sheaves with coefficients over arbitrary commutative rings. This note includes sketches of (some of the) proofs. The details, as well as the generalization to representations over arbitrary fields and commutative rings will appear elsewhere." @default.
- W2340162385 created "2016-06-24" @default.
- W2340162385 creator A5020652963 @default.
- W2340162385 creator A5039937918 @default.
- W2340162385 date "1997-03-09" @default.
- W2340162385 modified "2023-09-27" @default.
- W2340162385 title "PERVERSE SHEAVES ON LOOP GRASSMANNIANS AND LANGLANDS DUALITY" @default.
- W2340162385 cites W1495734188 @default.
- W2340162385 cites W2030221275 @default.
- W2340162385 cites W2612451553 @default.
- W2340162385 hasPublicationYear "1997" @default.
- W2340162385 type Work @default.
- W2340162385 sameAs 2340162385 @default.
- W2340162385 citedByCount "11" @default.
- W2340162385 countsByYear W23401623852018 @default.
- W2340162385 crossrefType "posted-content" @default.
- W2340162385 hasAuthorship W2340162385A5020652963 @default.
- W2340162385 hasAuthorship W2340162385A5039937918 @default.
- W2340162385 hasConcept C115624301 @default.
- W2340162385 hasConcept C134306372 @default.
- W2340162385 hasConcept C136119220 @default.
- W2340162385 hasConcept C156772000 @default.
- W2340162385 hasConcept C161491579 @default.
- W2340162385 hasConcept C162929932 @default.
- W2340162385 hasConcept C168393982 @default.
- W2340162385 hasConcept C177148314 @default.
- W2340162385 hasConcept C178790620 @default.
- W2340162385 hasConcept C183778304 @default.
- W2340162385 hasConcept C185592680 @default.
- W2340162385 hasConcept C202444582 @default.
- W2340162385 hasConcept C203436722 @default.
- W2340162385 hasConcept C2778023678 @default.
- W2340162385 hasConcept C2780990831 @default.
- W2340162385 hasConcept C2781311116 @default.
- W2340162385 hasConcept C33923547 @default.
- W2340162385 hasConcept C51255310 @default.
- W2340162385 hasConcept C78606066 @default.
- W2340162385 hasConcept C8010536 @default.
- W2340162385 hasConceptScore W2340162385C115624301 @default.
- W2340162385 hasConceptScore W2340162385C134306372 @default.
- W2340162385 hasConceptScore W2340162385C136119220 @default.
- W2340162385 hasConceptScore W2340162385C156772000 @default.
- W2340162385 hasConceptScore W2340162385C161491579 @default.
- W2340162385 hasConceptScore W2340162385C162929932 @default.
- W2340162385 hasConceptScore W2340162385C168393982 @default.
- W2340162385 hasConceptScore W2340162385C177148314 @default.
- W2340162385 hasConceptScore W2340162385C178790620 @default.
- W2340162385 hasConceptScore W2340162385C183778304 @default.
- W2340162385 hasConceptScore W2340162385C185592680 @default.
- W2340162385 hasConceptScore W2340162385C202444582 @default.
- W2340162385 hasConceptScore W2340162385C203436722 @default.
- W2340162385 hasConceptScore W2340162385C2778023678 @default.
- W2340162385 hasConceptScore W2340162385C2780990831 @default.
- W2340162385 hasConceptScore W2340162385C2781311116 @default.
- W2340162385 hasConceptScore W2340162385C33923547 @default.
- W2340162385 hasConceptScore W2340162385C51255310 @default.
- W2340162385 hasConceptScore W2340162385C78606066 @default.
- W2340162385 hasConceptScore W2340162385C8010536 @default.
- W2340162385 hasLocation W23401623851 @default.
- W2340162385 hasOpenAccess W2340162385 @default.
- W2340162385 hasPrimaryLocation W23401623851 @default.
- W2340162385 hasRelatedWork W1488216493 @default.
- W2340162385 hasRelatedWork W1495734188 @default.
- W2340162385 hasRelatedWork W1515697173 @default.
- W2340162385 hasRelatedWork W1780532851 @default.
- W2340162385 hasRelatedWork W1823537326 @default.
- W2340162385 hasRelatedWork W1980189113 @default.
- W2340162385 hasRelatedWork W1997598560 @default.
- W2340162385 hasRelatedWork W2009761289 @default.
- W2340162385 hasRelatedWork W2021615957 @default.
- W2340162385 hasRelatedWork W2106126509 @default.
- W2340162385 hasRelatedWork W2120606821 @default.
- W2340162385 hasRelatedWork W2275149429 @default.
- W2340162385 hasRelatedWork W2898614895 @default.
- W2340162385 hasRelatedWork W2949116443 @default.
- W2340162385 hasRelatedWork W2949722735 @default.
- W2340162385 hasRelatedWork W2952475410 @default.
- W2340162385 hasRelatedWork W2952979398 @default.
- W2340162385 hasRelatedWork W2963093108 @default.
- W2340162385 hasRelatedWork W2979607741 @default.
- W2340162385 hasRelatedWork W3207476641 @default.
- W2340162385 isParatext "false" @default.
- W2340162385 isRetracted "false" @default.
- W2340162385 magId "2340162385" @default.
- W2340162385 workType "article" @default.