Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340183428> ?p ?o ?g. }
- W2340183428 abstract "This paper develops a new neural architecture for modeling distributions (i.e., distributions on R^d) which is computationally efficient and specifically designed to take advantage of the structure of limit order books. The new architecture yields a low-dimensional model of price movements deep into the limit order book, allowing more effective use of information from deep in the limit order book (i.e., many levels beyond the best bid and best ask). This spatial neural network models the joint distribution of the state of the limit order book at a future time conditional on the current state of the limit order book. The neural outperforms other models such as the naive empirical model, logistic regression (with nonlinear features), and a standard neural architecture. Both neural networks strongly outperform the logistic regression model. Due to its more effective use of information deep in the limit order book, the neural especially outperforms the standard neural in the tail of the distribution, which is important for risk management applications. The models are trained and tested on nearly 500 stocks. Techniques from deep learning such as dropout are employed to improve performance. Due to the significant computational challenges associated with the large amount of data, models are trained with a cluster of 50 GPUs." @default.
- W2340183428 created "2016-06-24" @default.
- W2340183428 creator A5052064725 @default.
- W2340183428 date "2016-01-01" @default.
- W2340183428 modified "2023-09-26" @default.
- W2340183428 title "<i>Extended Abstract</i>: Neural Networks for Limit Order Books" @default.
- W2340183428 cites W1483946341 @default.
- W2340183428 cites W1505330957 @default.
- W2340183428 cites W1558606374 @default.
- W2340183428 cites W1562275451 @default.
- W2340183428 cites W1802640271 @default.
- W2340183428 cites W1806891645 @default.
- W2340183428 cites W1838704663 @default.
- W2340183428 cites W1891846840 @default.
- W2340183428 cites W1929275767 @default.
- W2340183428 cites W193250521 @default.
- W2340183428 cites W1962857276 @default.
- W2340183428 cites W1988095509 @default.
- W2340183428 cites W2018730525 @default.
- W2340183428 cites W2036547589 @default.
- W2340183428 cites W2051828847 @default.
- W2340183428 cites W2052611008 @default.
- W2340183428 cites W2075925017 @default.
- W2340183428 cites W2105099419 @default.
- W2340183428 cites W2129651828 @default.
- W2340183428 cites W2145339207 @default.
- W2340183428 cites W2160805924 @default.
- W2340183428 cites W2162288466 @default.
- W2340183428 cites W2170752972 @default.
- W2340183428 cites W2193987357 @default.
- W2340183428 cites W2197783172 @default.
- W2340183428 cites W222504575 @default.
- W2340183428 cites W2257979135 @default.
- W2340183428 cites W2319262441 @default.
- W2340183428 cites W2890394671 @default.
- W2340183428 cites W2951492718 @default.
- W2340183428 cites W3099636734 @default.
- W2340183428 cites W3101983215 @default.
- W2340183428 cites W3121438481 @default.
- W2340183428 cites W3121588992 @default.
- W2340183428 cites W3121742614 @default.
- W2340183428 cites W3124026636 @default.
- W2340183428 cites W3124436545 @default.
- W2340183428 cites W3125409615 @default.
- W2340183428 cites W3125796404 @default.
- W2340183428 cites W4238211125 @default.
- W2340183428 cites W2200035096 @default.
- W2340183428 cites W3122920094 @default.
- W2340183428 doi "https://doi.org/10.2139/ssrn.2710331" @default.
- W2340183428 hasPublicationYear "2016" @default.
- W2340183428 type Work @default.
- W2340183428 sameAs 2340183428 @default.
- W2340183428 citedByCount "8" @default.
- W2340183428 countsByYear W23401834282017 @default.
- W2340183428 countsByYear W23401834282018 @default.
- W2340183428 countsByYear W23401834282019 @default.
- W2340183428 countsByYear W23401834282020 @default.
- W2340183428 countsByYear W23401834282021 @default.
- W2340183428 crossrefType "journal-article" @default.
- W2340183428 hasAuthorship W2340183428A5052064725 @default.
- W2340183428 hasConcept C108583219 @default.
- W2340183428 hasConcept C119857082 @default.
- W2340183428 hasConcept C123657996 @default.
- W2340183428 hasConcept C134306372 @default.
- W2340183428 hasConcept C151201525 @default.
- W2340183428 hasConcept C151956035 @default.
- W2340183428 hasConcept C154945302 @default.
- W2340183428 hasConcept C166957645 @default.
- W2340183428 hasConcept C205649164 @default.
- W2340183428 hasConcept C2776145597 @default.
- W2340183428 hasConcept C33923547 @default.
- W2340183428 hasConcept C41008148 @default.
- W2340183428 hasConcept C50644808 @default.
- W2340183428 hasConceptScore W2340183428C108583219 @default.
- W2340183428 hasConceptScore W2340183428C119857082 @default.
- W2340183428 hasConceptScore W2340183428C123657996 @default.
- W2340183428 hasConceptScore W2340183428C134306372 @default.
- W2340183428 hasConceptScore W2340183428C151201525 @default.
- W2340183428 hasConceptScore W2340183428C151956035 @default.
- W2340183428 hasConceptScore W2340183428C154945302 @default.
- W2340183428 hasConceptScore W2340183428C166957645 @default.
- W2340183428 hasConceptScore W2340183428C205649164 @default.
- W2340183428 hasConceptScore W2340183428C2776145597 @default.
- W2340183428 hasConceptScore W2340183428C33923547 @default.
- W2340183428 hasConceptScore W2340183428C41008148 @default.
- W2340183428 hasConceptScore W2340183428C50644808 @default.
- W2340183428 hasLocation W23401834281 @default.
- W2340183428 hasOpenAccess W2340183428 @default.
- W2340183428 hasPrimaryLocation W23401834281 @default.
- W2340183428 hasRelatedWork W1200498302 @default.
- W2340183428 hasRelatedWork W2095705004 @default.
- W2340183428 hasRelatedWork W2230935666 @default.
- W2340183428 hasRelatedWork W2603648311 @default.
- W2340183428 hasRelatedWork W2749587125 @default.
- W2340183428 hasRelatedWork W2896102935 @default.
- W2340183428 hasRelatedWork W2896301651 @default.
- W2340183428 hasRelatedWork W2896419919 @default.
- W2340183428 hasRelatedWork W2900967578 @default.
- W2340183428 hasRelatedWork W2901744674 @default.
- W2340183428 hasRelatedWork W2912135812 @default.