Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340392805> ?p ?o ?g. }
- W2340392805 endingPage "285" @default.
- W2340392805 startingPage "273" @default.
- W2340392805 abstract "Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity (Qu), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio (Lw/B). Apart from Qu, other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when Lw/B is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity." @default.
- W2340392805 created "2016-06-24" @default.
- W2340392805 creator A5013826036 @default.
- W2340392805 creator A5031033107 @default.
- W2340392805 creator A5075536875 @default.
- W2340392805 date "2016-04-01" @default.
- W2340392805 modified "2023-10-14" @default.
- W2340392805 title "Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study" @default.
- W2340392805 cites W1500047089 @default.
- W2340392805 cites W1577668191 @default.
- W2340392805 cites W1971222658 @default.
- W2340392805 cites W1977727715 @default.
- W2340392805 cites W1982409428 @default.
- W2340392805 cites W1984191303 @default.
- W2340392805 cites W1984921330 @default.
- W2340392805 cites W1984995026 @default.
- W2340392805 cites W1987742500 @default.
- W2340392805 cites W1999004211 @default.
- W2340392805 cites W1999140879 @default.
- W2340392805 cites W2023604544 @default.
- W2340392805 cites W2031348893 @default.
- W2340392805 cites W2038453704 @default.
- W2340392805 cites W2047425774 @default.
- W2340392805 cites W2050960141 @default.
- W2340392805 cites W2056682110 @default.
- W2340392805 cites W2060157929 @default.
- W2340392805 cites W2067971470 @default.
- W2340392805 cites W2074275054 @default.
- W2340392805 cites W2078137712 @default.
- W2340392805 cites W2079795494 @default.
- W2340392805 cites W2080913375 @default.
- W2340392805 cites W2080959829 @default.
- W2340392805 cites W2086282769 @default.
- W2340392805 cites W2089775076 @default.
- W2340392805 cites W2094199595 @default.
- W2340392805 cites W2101066084 @default.
- W2340392805 cites W2116439621 @default.
- W2340392805 cites W2121067334 @default.
- W2340392805 cites W2124090653 @default.
- W2340392805 cites W2137983211 @default.
- W2340392805 cites W2139508021 @default.
- W2340392805 cites W2152195021 @default.
- W2340392805 cites W2155936667 @default.
- W2340392805 cites W2160829579 @default.
- W2340392805 cites W2166656061 @default.
- W2340392805 cites W2168974883 @default.
- W2340392805 cites W4243283192 @default.
- W2340392805 cites W4247013880 @default.
- W2340392805 doi "https://doi.org/10.1631/jzus.a1500033" @default.
- W2340392805 hasPublicationYear "2016" @default.
- W2340392805 type Work @default.
- W2340392805 sameAs 2340392805 @default.
- W2340392805 citedByCount "32" @default.
- W2340392805 countsByYear W23403928052016 @default.
- W2340392805 countsByYear W23403928052017 @default.
- W2340392805 countsByYear W23403928052018 @default.
- W2340392805 countsByYear W23403928052019 @default.
- W2340392805 countsByYear W23403928052020 @default.
- W2340392805 countsByYear W23403928052021 @default.
- W2340392805 countsByYear W23403928052022 @default.
- W2340392805 countsByYear W23403928052023 @default.
- W2340392805 crossrefType "journal-article" @default.
- W2340392805 hasAuthorship W2340392805A5013826036 @default.
- W2340392805 hasAuthorship W2340392805A5031033107 @default.
- W2340392805 hasAuthorship W2340392805A5075536875 @default.
- W2340392805 hasBestOaLocation W23403928051 @default.
- W2340392805 hasConcept C119857082 @default.
- W2340392805 hasConcept C127413603 @default.
- W2340392805 hasConcept C134306372 @default.
- W2340392805 hasConcept C135677250 @default.
- W2340392805 hasConcept C154945302 @default.
- W2340392805 hasConcept C166957645 @default.
- W2340392805 hasConcept C186633575 @default.
- W2340392805 hasConcept C187320778 @default.
- W2340392805 hasConcept C199978012 @default.
- W2340392805 hasConcept C205649164 @default.
- W2340392805 hasConcept C2780966255 @default.
- W2340392805 hasConcept C2993075670 @default.
- W2340392805 hasConcept C33923547 @default.
- W2340392805 hasConcept C41008148 @default.
- W2340392805 hasConcept C50644808 @default.
- W2340392805 hasConcept C66938386 @default.
- W2340392805 hasConcept C85617194 @default.
- W2340392805 hasConceptScore W2340392805C119857082 @default.
- W2340392805 hasConceptScore W2340392805C127413603 @default.
- W2340392805 hasConceptScore W2340392805C134306372 @default.
- W2340392805 hasConceptScore W2340392805C135677250 @default.
- W2340392805 hasConceptScore W2340392805C154945302 @default.
- W2340392805 hasConceptScore W2340392805C166957645 @default.
- W2340392805 hasConceptScore W2340392805C186633575 @default.
- W2340392805 hasConceptScore W2340392805C187320778 @default.
- W2340392805 hasConceptScore W2340392805C199978012 @default.
- W2340392805 hasConceptScore W2340392805C205649164 @default.
- W2340392805 hasConceptScore W2340392805C2780966255 @default.
- W2340392805 hasConceptScore W2340392805C2993075670 @default.
- W2340392805 hasConceptScore W2340392805C33923547 @default.
- W2340392805 hasConceptScore W2340392805C41008148 @default.
- W2340392805 hasConceptScore W2340392805C50644808 @default.