Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340614189> ?p ?o ?g. }
- W2340614189 endingPage "842" @default.
- W2340614189 startingPage "830" @default.
- W2340614189 abstract "Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2N). A recursive approximation to the optimal solution scales as O(N2), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets." @default.
- W2340614189 created "2016-06-24" @default.
- W2340614189 creator A5003775829 @default.
- W2340614189 creator A5075911690 @default.
- W2340614189 creator A5081468273 @default.
- W2340614189 creator A5087392653 @default.
- W2340614189 creator A5089731986 @default.
- W2340614189 date "2016-05-03" @default.
- W2340614189 modified "2023-10-01" @default.
- W2340614189 title "Knowledge-Based Methods To Train and Optimize Virtual Screening Ensembles" @default.
- W2340614189 cites W1968319881 @default.
- W2340614189 cites W1981225934 @default.
- W2340614189 cites W1985588649 @default.
- W2340614189 cites W1986240377 @default.
- W2340614189 cites W1990137109 @default.
- W2340614189 cites W1998166222 @default.
- W2340614189 cites W1999196562 @default.
- W2340614189 cites W2008518939 @default.
- W2340614189 cites W2008732224 @default.
- W2340614189 cites W2009658446 @default.
- W2340614189 cites W2010004274 @default.
- W2340614189 cites W2011301426 @default.
- W2340614189 cites W2012969029 @default.
- W2340614189 cites W2013090273 @default.
- W2340614189 cites W2024726841 @default.
- W2340614189 cites W2027065525 @default.
- W2340614189 cites W2027423337 @default.
- W2340614189 cites W2028134326 @default.
- W2340614189 cites W2030711777 @default.
- W2340614189 cites W2033882981 @default.
- W2340614189 cites W2037535298 @default.
- W2340614189 cites W2046588282 @default.
- W2340614189 cites W2048612759 @default.
- W2340614189 cites W2054337518 @default.
- W2340614189 cites W2056881083 @default.
- W2340614189 cites W2059712254 @default.
- W2340614189 cites W2060531713 @default.
- W2340614189 cites W2061799302 @default.
- W2340614189 cites W2062378498 @default.
- W2340614189 cites W2072180710 @default.
- W2340614189 cites W2072351846 @default.
- W2340614189 cites W2076790509 @default.
- W2340614189 cites W2079153029 @default.
- W2340614189 cites W2079188013 @default.
- W2340614189 cites W2094795801 @default.
- W2340614189 cites W2095732419 @default.
- W2340614189 cites W2103325328 @default.
- W2340614189 cites W2106140689 @default.
- W2340614189 cites W2106383417 @default.
- W2340614189 cites W2110114082 @default.
- W2340614189 cites W2112878090 @default.
- W2340614189 cites W2121895929 @default.
- W2340614189 cites W2125792789 @default.
- W2340614189 cites W2125828540 @default.
- W2340614189 cites W2126103216 @default.
- W2340614189 cites W2128245586 @default.
- W2340614189 cites W2129153475 @default.
- W2340614189 cites W2130479394 @default.
- W2340614189 cites W2134878116 @default.
- W2340614189 cites W2146292423 @default.
- W2340614189 cites W2147466870 @default.
- W2340614189 cites W2147993766 @default.
- W2340614189 cites W2152997175 @default.
- W2340614189 cites W2313116527 @default.
- W2340614189 cites W2317863386 @default.
- W2340614189 cites W2328207411 @default.
- W2340614189 cites W2330799739 @default.
- W2340614189 cites W2404280981 @default.
- W2340614189 cites W2422751523 @default.
- W2340614189 doi "https://doi.org/10.1021/acs.jcim.5b00684" @default.
- W2340614189 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4881196" @default.
- W2340614189 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27097522" @default.
- W2340614189 hasPublicationYear "2016" @default.
- W2340614189 type Work @default.
- W2340614189 sameAs 2340614189 @default.
- W2340614189 citedByCount "18" @default.
- W2340614189 countsByYear W23406141892016 @default.
- W2340614189 countsByYear W23406141892017 @default.
- W2340614189 countsByYear W23406141892018 @default.
- W2340614189 countsByYear W23406141892019 @default.
- W2340614189 countsByYear W23406141892020 @default.
- W2340614189 countsByYear W23406141892021 @default.
- W2340614189 countsByYear W23406141892022 @default.
- W2340614189 countsByYear W23406141892023 @default.
- W2340614189 crossrefType "journal-article" @default.
- W2340614189 hasAuthorship W2340614189A5003775829 @default.
- W2340614189 hasAuthorship W2340614189A5075911690 @default.
- W2340614189 hasAuthorship W2340614189A5081468273 @default.
- W2340614189 hasAuthorship W2340614189A5087392653 @default.
- W2340614189 hasAuthorship W2340614189A5089731986 @default.
- W2340614189 hasBestOaLocation W23406141891 @default.
- W2340614189 hasConcept C103697762 @default.
- W2340614189 hasConcept C119857082 @default.
- W2340614189 hasConcept C121608353 @default.
- W2340614189 hasConcept C147597530 @default.
- W2340614189 hasConcept C154945302 @default.
- W2340614189 hasConcept C159110408 @default.
- W2340614189 hasConcept C185592680 @default.