Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340667613> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2340667613 endingPage "20" @default.
- W2340667613 startingPage "15" @default.
- W2340667613 abstract "Recently published experimental work on evolution-in-materio applied to nanoscale materials shows promising results for future reconfigurable devices. These experiments were performed on disordered nano-particle networks that have no predefined design. The material has been treated as a blackbox, and genetic algorithms have been used to find appropriate configuration voltages to enable the target functionality. In order to support future experiments, we developed simulation tools for predicting candidate functionalities. One of these tools is based on a physical model, but the one we introduce in this paper is based on an artificial neural network. The advantage of this newly presented approach is that, after training the neural network to match either the real material or its physical model, it can be configured using gradient descent instead of a black-box optimisation. The experiments we report here demonstrate that the neural network can model the simulated nano-material quite accurately. The differentiable, neural network-based material model is then used to find logic gates, as a proof of principle. This shows that the new approach has great potential for partly replacing costly and time-consuming experiments with the real materials. Therefore, this approach has a high relevance for future computing, either as an alternative to digital computing or as an alternative way of producing multi-functional reconfigurable devices." @default.
- W2340667613 created "2016-06-24" @default.
- W2340667613 creator A5003104990 @default.
- W2340667613 creator A5046804763 @default.
- W2340667613 creator A5060380915 @default.
- W2340667613 creator A5068199087 @default.
- W2340667613 creator A5068613759 @default.
- W2340667613 creator A5071172037 @default.
- W2340667613 creator A5082808731 @default.
- W2340667613 creator A5089191267 @default.
- W2340667613 date "2016-03-20" @default.
- W2340667613 modified "2023-09-27" @default.
- W2340667613 title "Unconventional computing using evolution-in-nanomaterio: neural networks meet nanoparticle networks" @default.
- W2340667613 cites W1499864241 @default.
- W2340667613 cites W1995341919 @default.
- W2340667613 cites W20283819 @default.
- W2340667613 cites W2040870580 @default.
- W2340667613 cites W2097998348 @default.
- W2340667613 cites W2123859926 @default.
- W2340667613 cites W2952972501 @default.
- W2340667613 cites W2969945254 @default.
- W2340667613 cites W4625739 @default.
- W2340667613 cites W607927168 @default.
- W2340667613 hasPublicationYear "2016" @default.
- W2340667613 type Work @default.
- W2340667613 sameAs 2340667613 @default.
- W2340667613 citedByCount "0" @default.
- W2340667613 crossrefType "journal-article" @default.
- W2340667613 hasAuthorship W2340667613A5003104990 @default.
- W2340667613 hasAuthorship W2340667613A5046804763 @default.
- W2340667613 hasAuthorship W2340667613A5060380915 @default.
- W2340667613 hasAuthorship W2340667613A5068199087 @default.
- W2340667613 hasAuthorship W2340667613A5068613759 @default.
- W2340667613 hasAuthorship W2340667613A5071172037 @default.
- W2340667613 hasAuthorship W2340667613A5082808731 @default.
- W2340667613 hasAuthorship W2340667613A5089191267 @default.
- W2340667613 hasConcept C134306372 @default.
- W2340667613 hasConcept C153258448 @default.
- W2340667613 hasConcept C154945302 @default.
- W2340667613 hasConcept C202615002 @default.
- W2340667613 hasConcept C33923547 @default.
- W2340667613 hasConcept C41008148 @default.
- W2340667613 hasConcept C50644808 @default.
- W2340667613 hasConcept C94966114 @default.
- W2340667613 hasConceptScore W2340667613C134306372 @default.
- W2340667613 hasConceptScore W2340667613C153258448 @default.
- W2340667613 hasConceptScore W2340667613C154945302 @default.
- W2340667613 hasConceptScore W2340667613C202615002 @default.
- W2340667613 hasConceptScore W2340667613C33923547 @default.
- W2340667613 hasConceptScore W2340667613C41008148 @default.
- W2340667613 hasConceptScore W2340667613C50644808 @default.
- W2340667613 hasConceptScore W2340667613C94966114 @default.
- W2340667613 hasLocation W23406676131 @default.
- W2340667613 hasOpenAccess W2340667613 @default.
- W2340667613 hasPrimaryLocation W23406676131 @default.
- W2340667613 hasRelatedWork W1520220412 @default.
- W2340667613 hasRelatedWork W1596577414 @default.
- W2340667613 hasRelatedWork W1641584487 @default.
- W2340667613 hasRelatedWork W1962495108 @default.
- W2340667613 hasRelatedWork W1971406372 @default.
- W2340667613 hasRelatedWork W2014376774 @default.
- W2340667613 hasRelatedWork W2019806751 @default.
- W2340667613 hasRelatedWork W2032548797 @default.
- W2340667613 hasRelatedWork W2049314860 @default.
- W2340667613 hasRelatedWork W2068724095 @default.
- W2340667613 hasRelatedWork W2114398209 @default.
- W2340667613 hasRelatedWork W2131147926 @default.
- W2340667613 hasRelatedWork W2143959861 @default.
- W2340667613 hasRelatedWork W2341695053 @default.
- W2340667613 hasRelatedWork W2580958460 @default.
- W2340667613 hasRelatedWork W2908450212 @default.
- W2340667613 hasRelatedWork W2918214203 @default.
- W2340667613 hasRelatedWork W2976185208 @default.
- W2340667613 hasRelatedWork W3202867336 @default.
- W2340667613 hasRelatedWork W1969088562 @default.
- W2340667613 isParatext "false" @default.
- W2340667613 isRetracted "false" @default.
- W2340667613 magId "2340667613" @default.
- W2340667613 workType "article" @default.