Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340864013> ?p ?o ?g. }
- W2340864013 endingPage "219" @default.
- W2340864013 startingPage "205" @default.
- W2340864013 abstract "The approximation capabilities of feedforward neural networks with a single hidden layer and with various activation functions has been widely studied ([19], [8], [1], [2], [13]). Mhaskar and Micchelli have shown in [22] that a network using any non-polynomial locally Riemann integrable activation can approximate any continuous function of any number of variables on a compact set to any desired degree of accuracy (i.e. it has the universal approximation property). This important result has advanced the investigation of the complexity problem: If one needs to approximate a function from a known class of functions within a prescribed accuracy, how many neurons are necessary to realize this approximation for all functions in the class? De Vore et al. ([3],) proved the following result: if one approximates continuously a class of functions of d variables with bounded partial derivatives on a compacta, in order to accomplish the order of approximation O(1/n), it is necessary to use at least O(n d) number of neurons, regardless of the activation function. In other words, when the class of functions being approximated is defined in terms of bounds on the partial derivatives, a dimension independent bound for the degree of approximation is not possible. Kůrková studied the relationship between approximation rates of one-hidden-layer neural networks with different types of hidden units. She showed in [14] that no sufficiently large class of functions can be approximated by one-hidden-layer networks with another type of unit than Heaviside perceptrons with a rate of approximation related to the rate of approximation by perceptron networks.KeywordsHide LayerRadial Basis FunctionActivation FunctionBoolean FunctionSigmoidal FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W2340864013 created "2016-06-24" @default.
- W2340864013 creator A5013447033 @default.
- W2340864013 creator A5041761117 @default.
- W2340864013 creator A5089631093 @default.
- W2340864013 date "1998-01-01" @default.
- W2340864013 modified "2023-10-18" @default.
- W2340864013 title "Rates of Approximation in a Feedforward Network Depend on the Type of Computational Unit" @default.
- W2340864013 cites W1990261069 @default.
- W2340864013 cites W2006240266 @default.
- W2340864013 cites W2034551836 @default.
- W2340864013 cites W2044828368 @default.
- W2340864013 cites W2046084401 @default.
- W2340864013 cites W2051968241 @default.
- W2340864013 cites W2053817819 @default.
- W2340864013 cites W2058538513 @default.
- W2340864013 cites W2075407161 @default.
- W2340864013 cites W2090432705 @default.
- W2340864013 cites W2103496339 @default.
- W2340864013 cites W2137983211 @default.
- W2340864013 cites W2166116275 @default.
- W2340864013 cites W2215331545 @default.
- W2340864013 cites W98877548 @default.
- W2340864013 doi "https://doi.org/10.1007/978-1-4471-1523-6_14" @default.
- W2340864013 hasPublicationYear "1998" @default.
- W2340864013 type Work @default.
- W2340864013 sameAs 2340864013 @default.
- W2340864013 citedByCount "0" @default.
- W2340864013 crossrefType "book-chapter" @default.
- W2340864013 hasAuthorship W2340864013A5013447033 @default.
- W2340864013 hasAuthorship W2340864013A5041761117 @default.
- W2340864013 hasAuthorship W2340864013A5089631093 @default.
- W2340864013 hasConcept C11413529 @default.
- W2340864013 hasConcept C117148685 @default.
- W2340864013 hasConcept C118615104 @default.
- W2340864013 hasConcept C121332964 @default.
- W2340864013 hasConcept C122383733 @default.
- W2340864013 hasConcept C134306372 @default.
- W2340864013 hasConcept C14036430 @default.
- W2340864013 hasConcept C145242015 @default.
- W2340864013 hasConcept C148764684 @default.
- W2340864013 hasConcept C154945302 @default.
- W2340864013 hasConcept C202444582 @default.
- W2340864013 hasConcept C24890656 @default.
- W2340864013 hasConcept C2775997480 @default.
- W2340864013 hasConcept C2777212361 @default.
- W2340864013 hasConcept C28826006 @default.
- W2340864013 hasConcept C33676613 @default.
- W2340864013 hasConcept C33923547 @default.
- W2340864013 hasConcept C34388435 @default.
- W2340864013 hasConcept C38365724 @default.
- W2340864013 hasConcept C41008148 @default.
- W2340864013 hasConcept C50644808 @default.
- W2340864013 hasConcept C60908668 @default.
- W2340864013 hasConcept C78458016 @default.
- W2340864013 hasConcept C7980502 @default.
- W2340864013 hasConcept C86803240 @default.
- W2340864013 hasConcept C90119067 @default.
- W2340864013 hasConcept C91873725 @default.
- W2340864013 hasConceptScore W2340864013C11413529 @default.
- W2340864013 hasConceptScore W2340864013C117148685 @default.
- W2340864013 hasConceptScore W2340864013C118615104 @default.
- W2340864013 hasConceptScore W2340864013C121332964 @default.
- W2340864013 hasConceptScore W2340864013C122383733 @default.
- W2340864013 hasConceptScore W2340864013C134306372 @default.
- W2340864013 hasConceptScore W2340864013C14036430 @default.
- W2340864013 hasConceptScore W2340864013C145242015 @default.
- W2340864013 hasConceptScore W2340864013C148764684 @default.
- W2340864013 hasConceptScore W2340864013C154945302 @default.
- W2340864013 hasConceptScore W2340864013C202444582 @default.
- W2340864013 hasConceptScore W2340864013C24890656 @default.
- W2340864013 hasConceptScore W2340864013C2775997480 @default.
- W2340864013 hasConceptScore W2340864013C2777212361 @default.
- W2340864013 hasConceptScore W2340864013C28826006 @default.
- W2340864013 hasConceptScore W2340864013C33676613 @default.
- W2340864013 hasConceptScore W2340864013C33923547 @default.
- W2340864013 hasConceptScore W2340864013C34388435 @default.
- W2340864013 hasConceptScore W2340864013C38365724 @default.
- W2340864013 hasConceptScore W2340864013C41008148 @default.
- W2340864013 hasConceptScore W2340864013C50644808 @default.
- W2340864013 hasConceptScore W2340864013C60908668 @default.
- W2340864013 hasConceptScore W2340864013C78458016 @default.
- W2340864013 hasConceptScore W2340864013C7980502 @default.
- W2340864013 hasConceptScore W2340864013C86803240 @default.
- W2340864013 hasConceptScore W2340864013C90119067 @default.
- W2340864013 hasConceptScore W2340864013C91873725 @default.
- W2340864013 hasLocation W23408640131 @default.
- W2340864013 hasOpenAccess W2340864013 @default.
- W2340864013 hasPrimaryLocation W23408640131 @default.
- W2340864013 hasRelatedWork W1860129062 @default.
- W2340864013 hasRelatedWork W1970911366 @default.
- W2340864013 hasRelatedWork W1986245433 @default.
- W2340864013 hasRelatedWork W2009566405 @default.
- W2340864013 hasRelatedWork W2041163709 @default.
- W2340864013 hasRelatedWork W2064020213 @default.
- W2340864013 hasRelatedWork W2069862318 @default.
- W2340864013 hasRelatedWork W2078628265 @default.
- W2340864013 hasRelatedWork W2079224763 @default.