Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340896543> ?p ?o ?g. }
- W2340896543 endingPage "226" @default.
- W2340896543 startingPage "215" @default.
- W2340896543 abstract "With the increasing contribution of wind power to electric power grids, accurate forecasting of short-term wind power has become particularly valuable for wind farm operators, utility operators and customers. The aim of this study is to investigate the interdependence structure of errors in short-term wind power forecasting that is crucial for building error forecast models with regression learning algorithms to correct predictions and improve final forecasting accuracy. In this paper, several novel short-term wind power combined forecasting models based on error forecast correction are proposed in the one-step ahead, continuous and discontinuous multi-step ahead forecasting modes. First, the correlation relationships of forecast errors of the autoregressive model, the persistence method and the support vector machine model in various forecasting modes have been investigated to determine whether the error forecast models can be established by regression learning algorithms. Second, according to the results of the correlation analysis, the range of input variables is defined and an efficient strategy for selecting the input variables for the error forecast models is proposed. Finally, several combined forecasting models are proposed, in which the error forecast models are based on support vector machine/extreme learning machine, and correct the short-term wind power forecast values. The data collected from a wind farm in Hebei Province, China, are selected as a case study to demonstrate the effectiveness of the proposed combined models. The simulation results show that: (1) the autocorrelation function of the one-step ahead forecast errors of support vector machine shows more significant tailing than those of the autoregressive and persistence models and the correlation relationships of the multi-step ahead forecast errors of support vector machine do significantly exist, but in the case of the autoregressive and persistence models, they do not; (2) the proposed combined models have significantly enhanced the short-term wind power forecasting accuracy in the three forecasting modes. In particular, the one-step ahead forecasting accuracies of combined models show little difference; for the continuous multi-step ahead forecasting, the improvements of the proposed combined models compared with a certain individual model increase with increasing prediction steps." @default.
- W2340896543 created "2016-06-24" @default.
- W2340896543 creator A5004183536 @default.
- W2340896543 creator A5010748298 @default.
- W2340896543 creator A5047634339 @default.
- W2340896543 creator A5065600126 @default.
- W2340896543 creator A5091372190 @default.
- W2340896543 date "2016-07-01" @default.
- W2340896543 modified "2023-09-23" @default.
- W2340896543 title "Short-term wind power combined forecasting based on error forecast correction" @default.
- W2340896543 cites W1433180923 @default.
- W2340896543 cites W1750357415 @default.
- W2340896543 cites W1972014080 @default.
- W2340896543 cites W1977175923 @default.
- W2340896543 cites W1979331645 @default.
- W2340896543 cites W1989098521 @default.
- W2340896543 cites W1995140642 @default.
- W2340896543 cites W2000878957 @default.
- W2340896543 cites W2016752668 @default.
- W2340896543 cites W2039306928 @default.
- W2340896543 cites W2044735270 @default.
- W2340896543 cites W2058504886 @default.
- W2340896543 cites W2058922249 @default.
- W2340896543 cites W2102300883 @default.
- W2340896543 cites W2111072639 @default.
- W2340896543 cites W2113238782 @default.
- W2340896543 cites W2114534529 @default.
- W2340896543 cites W2147526029 @default.
- W2340896543 cites W2151848442 @default.
- W2340896543 cites W2154253682 @default.
- W2340896543 cites W2158054309 @default.
- W2340896543 cites W2254535312 @default.
- W2340896543 cites W2275988060 @default.
- W2340896543 cites W2284726324 @default.
- W2340896543 cites W2286725013 @default.
- W2340896543 cites W2321536237 @default.
- W2340896543 cites W2540400017 @default.
- W2340896543 cites W2547913989 @default.
- W2340896543 cites W341735883 @default.
- W2340896543 cites W4239510810 @default.
- W2340896543 cites W588468042 @default.
- W2340896543 cites W602833636 @default.
- W2340896543 doi "https://doi.org/10.1016/j.enconman.2016.04.036" @default.
- W2340896543 hasPublicationYear "2016" @default.
- W2340896543 type Work @default.
- W2340896543 sameAs 2340896543 @default.
- W2340896543 citedByCount "82" @default.
- W2340896543 countsByYear W23408965432016 @default.
- W2340896543 countsByYear W23408965432017 @default.
- W2340896543 countsByYear W23408965432018 @default.
- W2340896543 countsByYear W23408965432019 @default.
- W2340896543 countsByYear W23408965432020 @default.
- W2340896543 countsByYear W23408965432021 @default.
- W2340896543 countsByYear W23408965432022 @default.
- W2340896543 countsByYear W23408965432023 @default.
- W2340896543 crossrefType "journal-article" @default.
- W2340896543 hasAuthorship W2340896543A5004183536 @default.
- W2340896543 hasAuthorship W2340896543A5010748298 @default.
- W2340896543 hasAuthorship W2340896543A5047634339 @default.
- W2340896543 hasAuthorship W2340896543A5065600126 @default.
- W2340896543 hasAuthorship W2340896543A5091372190 @default.
- W2340896543 hasConcept C105795698 @default.
- W2340896543 hasConcept C114775468 @default.
- W2340896543 hasConcept C119599485 @default.
- W2340896543 hasConcept C119857082 @default.
- W2340896543 hasConcept C121332964 @default.
- W2340896543 hasConcept C122282355 @default.
- W2340896543 hasConcept C12267149 @default.
- W2340896543 hasConcept C127413603 @default.
- W2340896543 hasConcept C146978453 @default.
- W2340896543 hasConcept C149782125 @default.
- W2340896543 hasConcept C151406439 @default.
- W2340896543 hasConcept C153294291 @default.
- W2340896543 hasConcept C154945302 @default.
- W2340896543 hasConcept C159877910 @default.
- W2340896543 hasConcept C161067210 @default.
- W2340896543 hasConcept C163258240 @default.
- W2340896543 hasConcept C166851805 @default.
- W2340896543 hasConcept C174303752 @default.
- W2340896543 hasConcept C204323151 @default.
- W2340896543 hasConcept C24338571 @default.
- W2340896543 hasConcept C2780150128 @default.
- W2340896543 hasConcept C2781084341 @default.
- W2340896543 hasConcept C33923547 @default.
- W2340896543 hasConcept C41008148 @default.
- W2340896543 hasConcept C49937458 @default.
- W2340896543 hasConcept C50644808 @default.
- W2340896543 hasConcept C5297727 @default.
- W2340896543 hasConcept C61797465 @default.
- W2340896543 hasConcept C62520636 @default.
- W2340896543 hasConcept C78600449 @default.
- W2340896543 hasConcept C89227174 @default.
- W2340896543 hasConceptScore W2340896543C105795698 @default.
- W2340896543 hasConceptScore W2340896543C114775468 @default.
- W2340896543 hasConceptScore W2340896543C119599485 @default.
- W2340896543 hasConceptScore W2340896543C119857082 @default.
- W2340896543 hasConceptScore W2340896543C121332964 @default.
- W2340896543 hasConceptScore W2340896543C122282355 @default.