Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340963721> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2340963721 endingPage "23" @default.
- W2340963721 startingPage "1" @default.
- W2340963721 abstract "In his seminal paper from 1952 Dirac showed that the complete graph on n≥3 vertices remains Hamiltonian even if we allow an adversary to remove ⌊n/2⌋ edges touching each vertex. In 1960 Ghouila–Houri obtained an analogue statement for digraphs by showing that every directed graph on n≥3 vertices with minimum in- and out-degree at least n/2 contains a directed Hamilton cycle. Both statements quantify the robustness of complete graphs (digraphs) with respect to the property of containing a Hamilton cycle. A natural way to generalize such results to arbitrary graphs (digraphs) is using the notion of local resilience. The local resilience of a graph (digraph) G with respect to a property P is the maximum number r such that G has the property P even if we allow an adversary to remove an r-fraction of (in- and out-going) edges touching each vertex. The theorems of Dirac and Ghouila–Houri state that the local resilience of the complete graph and digraph with respect to Hamiltonicity is 1/2. Recently, this statements have been generalized to random settings. Lee and Sudakov (2012) proved that the local resilience of a random graph with edge probability p=ω(logn/n) with respect to Hamiltonicity is 1/2±o(1). For random directed graphs, Hefetz, Steger and Sudakov (2014) proved an analogue statement, but only for edge probability p=ω(logn/n). In this paper we significantly improve their result to p=ω(log8n/n), which is optimal up to the polylogarithmic factor." @default.
- W2340963721 created "2016-06-24" @default.
- W2340963721 creator A5029262547 @default.
- W2340963721 creator A5055049769 @default.
- W2340963721 creator A5062161408 @default.
- W2340963721 creator A5074609284 @default.
- W2340963721 creator A5076952022 @default.
- W2340963721 date "2017-09-01" @default.
- W2340963721 modified "2023-10-14" @default.
- W2340963721 title "Robust Hamiltonicity of random directed graphs" @default.
- W2340963721 cites W1971367602 @default.
- W2340963721 cites W1974769464 @default.
- W2340963721 cites W1976052016 @default.
- W2340963721 cites W2009232680 @default.
- W2340963721 cites W2016267660 @default.
- W2340963721 cites W2045530818 @default.
- W2340963721 cites W2075689026 @default.
- W2340963721 cites W2092565550 @default.
- W2340963721 cites W2126648306 @default.
- W2340963721 cites W2134184632 @default.
- W2340963721 cites W217363743 @default.
- W2340963721 cites W2953347513 @default.
- W2340963721 cites W3100625388 @default.
- W2340963721 doi "https://doi.org/10.1016/j.jctb.2017.03.006" @default.
- W2340963721 hasPublicationYear "2017" @default.
- W2340963721 type Work @default.
- W2340963721 sameAs 2340963721 @default.
- W2340963721 citedByCount "17" @default.
- W2340963721 countsByYear W23409637212015 @default.
- W2340963721 countsByYear W23409637212016 @default.
- W2340963721 countsByYear W23409637212017 @default.
- W2340963721 countsByYear W23409637212018 @default.
- W2340963721 countsByYear W23409637212019 @default.
- W2340963721 countsByYear W23409637212020 @default.
- W2340963721 countsByYear W23409637212021 @default.
- W2340963721 countsByYear W23409637212022 @default.
- W2340963721 countsByYear W23409637212023 @default.
- W2340963721 crossrefType "journal-article" @default.
- W2340963721 hasAuthorship W2340963721A5029262547 @default.
- W2340963721 hasAuthorship W2340963721A5055049769 @default.
- W2340963721 hasAuthorship W2340963721A5062161408 @default.
- W2340963721 hasAuthorship W2340963721A5074609284 @default.
- W2340963721 hasAuthorship W2340963721A5076952022 @default.
- W2340963721 hasBestOaLocation W23409637212 @default.
- W2340963721 hasConcept C114614502 @default.
- W2340963721 hasConcept C118615104 @default.
- W2340963721 hasConcept C132525143 @default.
- W2340963721 hasConcept C2779145032 @default.
- W2340963721 hasConcept C33923547 @default.
- W2340963721 hasConcept C47458327 @default.
- W2340963721 hasConcept C80899671 @default.
- W2340963721 hasConcept C86524685 @default.
- W2340963721 hasConceptScore W2340963721C114614502 @default.
- W2340963721 hasConceptScore W2340963721C118615104 @default.
- W2340963721 hasConceptScore W2340963721C132525143 @default.
- W2340963721 hasConceptScore W2340963721C2779145032 @default.
- W2340963721 hasConceptScore W2340963721C33923547 @default.
- W2340963721 hasConceptScore W2340963721C47458327 @default.
- W2340963721 hasConceptScore W2340963721C80899671 @default.
- W2340963721 hasConceptScore W2340963721C86524685 @default.
- W2340963721 hasLocation W23409637211 @default.
- W2340963721 hasLocation W23409637212 @default.
- W2340963721 hasLocation W23409637213 @default.
- W2340963721 hasOpenAccess W2340963721 @default.
- W2340963721 hasPrimaryLocation W23409637211 @default.
- W2340963721 hasRelatedWork W1937260099 @default.
- W2340963721 hasRelatedWork W1964289883 @default.
- W2340963721 hasRelatedWork W2071896207 @default.
- W2340963721 hasRelatedWork W2083440813 @default.
- W2340963721 hasRelatedWork W2963578855 @default.
- W2340963721 hasRelatedWork W2964329450 @default.
- W2340963721 hasRelatedWork W3135656566 @default.
- W2340963721 hasRelatedWork W3194176857 @default.
- W2340963721 hasRelatedWork W4206244388 @default.
- W2340963721 hasRelatedWork W4213278314 @default.
- W2340963721 hasVolume "126" @default.
- W2340963721 isParatext "false" @default.
- W2340963721 isRetracted "false" @default.
- W2340963721 magId "2340963721" @default.
- W2340963721 workType "article" @default.