Matches in SemOpenAlex for { <https://semopenalex.org/work/W2340967478> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2340967478 abstract "Anomaly detection is an important aspect of data analysis in order to identify data items that significantly differ from normal data. It is used in a variety of fields such as machine monitoring, environmental monitoring and security applications and is a well-studied area in the field of pattern recognition and machine learning. In this thesis, the key challenges of performing anomaly detection in non-stationary and distributed environments are addressed separately.In non-stationary environments the data distribution may alter, meaning that the concepts to be learned evolve in time. Anomaly detection techniques must be able to adapt to a non-stationary data distribution in order to perform optimally. This requires an update to the model that is being used to classify data. A batch approach to the problem requires a reconstruction of the model each time an update is required. Incrementallearning overcomes this issue by using the previous model as the basis for an update. Two kernel-based incremental anomaly detection techniques are proposed. One technique uses kernel principal component analysis to perform anomaly detection. The kernel eigenspace is incrementally updated by splitting and merging kerneleigenspaces. The technique is shown to be more accurate than current state-of-the-art solutions. The second technique offers a reduction in the number of computations by using an incrementally updated hypersphere in kernel space.In addition to updating a model, in a non-stationary environment an update to the parameters of the model are required. Anomaly detection algorithms require the selection of appropriate parameters in order to perform optimally for a given data set. If the distribution of the data changes, an update to the parameters of a model is required. An automatic parameter optimization procedure is proposed for the one-class quartersphere support vector machine where the v parameter is selected automatically based on the anomaly rate in the training set.In environments such as wireless sensor networks, data might be distributed amongst a number of nodes. In this case, distributed learning is required where nodes construct a classifier, or an approximation of the classifier, that would have been formed had all the data been available to one instance of the algorithm. A principal component analysis based anomaly detection method is proposed that uses the solution to a convexoptimization problem. The convex optimization problem is then derived in a distributed form, with each node running a local instance of the algorithm. Nodes are able to iterate towards an anomaly detector equivalent to the global solution by exchanging short messages.Detailed evaluations of the proposed techniques are performed against existing state-of-the-art techniques using a variety of synthetic and real-world data sets. Results in the area of a non-stationary environment illustrate the necessity to adapt an anomaly detection model to the changing data distribution. It is shown that the proposed incremental techniques are maintain accuracy while reducing the number of computations.In addition, optimal parameters derived from an unlabelled training set are shown to exhibit superior performance to statically selected parameters.In the area of a distributed environment, it is shown that local learning is insufficient due to the lack of examples. Distributed learning can be performed in a manner where a centralized model can be derived by passing small amounts of information between neighbouring nodes. This approach yields a model that obtains performance equal to that of the centralized model." @default.
- W2340967478 created "2016-06-24" @default.
- W2340967478 creator A5068942025 @default.
- W2340967478 date "2014-12-01" @default.
- W2340967478 modified "2023-09-26" @default.
- W2340967478 title "Anomaly Detection in Non-Stationary and Distributed Environments." @default.
- W2340967478 cites W1554584955 @default.
- W2340967478 cites W1970655212 @default.
- W2340967478 cites W1983091438 @default.
- W2340967478 cites W2003208028 @default.
- W2340967478 cites W2003827925 @default.
- W2340967478 cites W2022775778 @default.
- W2340967478 cites W2029901018 @default.
- W2340967478 cites W2069645876 @default.
- W2340967478 cites W2083868427 @default.
- W2340967478 cites W2101771332 @default.
- W2340967478 cites W2109599521 @default.
- W2340967478 cites W2115627867 @default.
- W2340967478 cites W2116174408 @default.
- W2340967478 cites W2118978333 @default.
- W2340967478 cites W2122646361 @default.
- W2340967478 cites W2133037796 @default.
- W2340967478 cites W2134255060 @default.
- W2340967478 hasPublicationYear "2014" @default.
- W2340967478 type Work @default.
- W2340967478 sameAs 2340967478 @default.
- W2340967478 citedByCount "0" @default.
- W2340967478 crossrefType "dissertation" @default.
- W2340967478 hasAuthorship W2340967478A5068942025 @default.
- W2340967478 hasConcept C114614502 @default.
- W2340967478 hasConcept C119857082 @default.
- W2340967478 hasConcept C122280245 @default.
- W2340967478 hasConcept C12267149 @default.
- W2340967478 hasConcept C124101348 @default.
- W2340967478 hasConcept C153180895 @default.
- W2340967478 hasConcept C154945302 @default.
- W2340967478 hasConcept C182335926 @default.
- W2340967478 hasConcept C202444582 @default.
- W2340967478 hasConcept C2776562905 @default.
- W2340967478 hasConcept C33923547 @default.
- W2340967478 hasConcept C41008148 @default.
- W2340967478 hasConcept C739882 @default.
- W2340967478 hasConcept C74193536 @default.
- W2340967478 hasConcept C9652623 @default.
- W2340967478 hasConceptScore W2340967478C114614502 @default.
- W2340967478 hasConceptScore W2340967478C119857082 @default.
- W2340967478 hasConceptScore W2340967478C122280245 @default.
- W2340967478 hasConceptScore W2340967478C12267149 @default.
- W2340967478 hasConceptScore W2340967478C124101348 @default.
- W2340967478 hasConceptScore W2340967478C153180895 @default.
- W2340967478 hasConceptScore W2340967478C154945302 @default.
- W2340967478 hasConceptScore W2340967478C182335926 @default.
- W2340967478 hasConceptScore W2340967478C202444582 @default.
- W2340967478 hasConceptScore W2340967478C2776562905 @default.
- W2340967478 hasConceptScore W2340967478C33923547 @default.
- W2340967478 hasConceptScore W2340967478C41008148 @default.
- W2340967478 hasConceptScore W2340967478C739882 @default.
- W2340967478 hasConceptScore W2340967478C74193536 @default.
- W2340967478 hasConceptScore W2340967478C9652623 @default.
- W2340967478 hasLocation W23409674781 @default.
- W2340967478 hasOpenAccess W2340967478 @default.
- W2340967478 hasPrimaryLocation W23409674781 @default.
- W2340967478 hasRelatedWork W196190188 @default.
- W2340967478 hasRelatedWork W2006240064 @default.
- W2340967478 hasRelatedWork W2014903366 @default.
- W2340967478 hasRelatedWork W2134587493 @default.
- W2340967478 hasRelatedWork W2555732556 @default.
- W2340967478 hasRelatedWork W2796374795 @default.
- W2340967478 hasRelatedWork W2803192575 @default.
- W2340967478 hasRelatedWork W2907033687 @default.
- W2340967478 hasRelatedWork W2916044303 @default.
- W2340967478 hasRelatedWork W2936704189 @default.
- W2340967478 hasRelatedWork W2992783264 @default.
- W2340967478 hasRelatedWork W3036271296 @default.
- W2340967478 hasRelatedWork W3043468448 @default.
- W2340967478 hasRelatedWork W3088427272 @default.
- W2340967478 hasRelatedWork W3123665962 @default.
- W2340967478 hasRelatedWork W3161020276 @default.
- W2340967478 hasRelatedWork W3180215711 @default.
- W2340967478 hasRelatedWork W3181131484 @default.
- W2340967478 hasRelatedWork W3197795948 @default.
- W2340967478 hasRelatedWork W3084422963 @default.
- W2340967478 isParatext "false" @default.
- W2340967478 isRetracted "false" @default.
- W2340967478 magId "2340967478" @default.
- W2340967478 workType "dissertation" @default.