Matches in SemOpenAlex for { <https://semopenalex.org/work/W2342766803> ?p ?o ?g. }
- W2342766803 endingPage "59" @default.
- W2342766803 startingPage "48" @default.
- W2342766803 abstract "Alcohol use disorder (AUD) has been considered as a social and health issue worldwide. More importantly, the screening of AUD patients has been challenging due to the subjectivity imparted by self-test reports. Automated methods involving neuroimaging modality such as quantitative electroencephalography (QEEG) have shown promising research results. However, the QEEG methods were developed only for alcohol dependents (AD) and healthy controls. Therefore, this study sought to propose a machine learning (ML) method to classify 1) between alcohol abusers and healthy controls, and 2) among healthy controls, alcohol abusers, and alcoholics. The proposed ML method involved QEEG feature extraction, selection of most relevant features, and classification of the study participants into their relevant groups. The study participants such as 12 alcohol abusers (mean age 56.70 ± 15.33 years), 18 alcoholics (mean age 46.80 ± 9.29 years), and 15 healthy controls (mean 42.67 ± 15.90 years) were recruited to acquire EEG data. The data were recorded during 10 minutes of eyes closed (EC) and eyes open (EO) conditions. Furthermore, the EEG data were utilized to extract QEEG features such as absolute power (AP) and relative power (RP). Methods such as t-test and principal component analysis (PCA) were employed to select most relevant QEEG features. Finally, the discriminant QEEG features were used as inputs to the classification models: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Multilayer back-Propagation Network (MLP), and Logistic Model Trees (LMT), supported by 10-fold cross validation. As results, the LMT has achieved best performance rendering a classification accuracy (96%), sensitivity (97%) and specificity (93%). In addition, a further classification for each subgroup of AUD patients has achieved accuracy (> 90%). In conclusion, the results implicated significant neurophysiological differences among alcohol abusers, alcoholics, and controls. Moreover, the AUD patients exhibited significantly decreased theta as compared with the healthy controls." @default.
- W2342766803 created "2016-06-24" @default.
- W2342766803 creator A5020520941 @default.
- W2342766803 creator A5040247771 @default.
- W2342766803 creator A5042801249 @default.
- W2342766803 creator A5045697627 @default.
- W2342766803 creator A5077623317 @default.
- W2342766803 date "2016-08-01" @default.
- W2342766803 modified "2023-10-16" @default.
- W2342766803 title "Automatic diagnosis of alcohol use disorder using EEG features" @default.
- W2342766803 cites W1498109314 @default.
- W2342766803 cites W1518873647 @default.
- W2342766803 cites W1556947891 @default.
- W2342766803 cites W1963750524 @default.
- W2342766803 cites W1981039744 @default.
- W2342766803 cites W1983839088 @default.
- W2342766803 cites W1984573698 @default.
- W2342766803 cites W1994422401 @default.
- W2342766803 cites W1995164466 @default.
- W2342766803 cites W1998302204 @default.
- W2342766803 cites W2001619934 @default.
- W2342766803 cites W2003318749 @default.
- W2342766803 cites W2005918389 @default.
- W2342766803 cites W2007215820 @default.
- W2342766803 cites W2007739294 @default.
- W2342766803 cites W2027192050 @default.
- W2342766803 cites W2029426756 @default.
- W2342766803 cites W2029905732 @default.
- W2342766803 cites W2030663742 @default.
- W2342766803 cites W2039562180 @default.
- W2342766803 cites W2041319557 @default.
- W2342766803 cites W2049166497 @default.
- W2342766803 cites W2049270581 @default.
- W2342766803 cites W2055662418 @default.
- W2342766803 cites W2057540292 @default.
- W2342766803 cites W2059436730 @default.
- W2342766803 cites W2061171222 @default.
- W2342766803 cites W2061195971 @default.
- W2342766803 cites W2064359344 @default.
- W2342766803 cites W2067065639 @default.
- W2342766803 cites W2071512489 @default.
- W2342766803 cites W2076782668 @default.
- W2342766803 cites W2080959935 @default.
- W2342766803 cites W2081843146 @default.
- W2342766803 cites W2098330912 @default.
- W2342766803 cites W2098833027 @default.
- W2342766803 cites W2104264934 @default.
- W2342766803 cites W2108592835 @default.
- W2342766803 cites W2110518784 @default.
- W2342766803 cites W2117250940 @default.
- W2342766803 cites W2125135339 @default.
- W2342766803 cites W2125686177 @default.
- W2342766803 cites W2125993116 @default.
- W2342766803 cites W2157825442 @default.
- W2342766803 cites W2172036914 @default.
- W2342766803 cites W2180927083 @default.
- W2342766803 cites W2290062026 @default.
- W2342766803 cites W2294798173 @default.
- W2342766803 cites W2315140819 @default.
- W2342766803 cites W2461134574 @default.
- W2342766803 cites W4251690536 @default.
- W2342766803 cites W4252612337 @default.
- W2342766803 cites W4376849352 @default.
- W2342766803 doi "https://doi.org/10.1016/j.knosys.2016.04.026" @default.
- W2342766803 hasPublicationYear "2016" @default.
- W2342766803 type Work @default.
- W2342766803 sameAs 2342766803 @default.
- W2342766803 citedByCount "42" @default.
- W2342766803 countsByYear W23427668032016 @default.
- W2342766803 countsByYear W23427668032017 @default.
- W2342766803 countsByYear W23427668032018 @default.
- W2342766803 countsByYear W23427668032019 @default.
- W2342766803 countsByYear W23427668032020 @default.
- W2342766803 countsByYear W23427668032021 @default.
- W2342766803 countsByYear W23427668032022 @default.
- W2342766803 countsByYear W23427668032023 @default.
- W2342766803 crossrefType "journal-article" @default.
- W2342766803 hasAuthorship W2342766803A5020520941 @default.
- W2342766803 hasAuthorship W2342766803A5040247771 @default.
- W2342766803 hasAuthorship W2342766803A5042801249 @default.
- W2342766803 hasAuthorship W2342766803A5045697627 @default.
- W2342766803 hasAuthorship W2342766803A5077623317 @default.
- W2342766803 hasConcept C118552586 @default.
- W2342766803 hasConcept C12267149 @default.
- W2342766803 hasConcept C148483581 @default.
- W2342766803 hasConcept C153180895 @default.
- W2342766803 hasConcept C154945302 @default.
- W2342766803 hasConcept C185592680 @default.
- W2342766803 hasConcept C27438332 @default.
- W2342766803 hasConcept C2779442783 @default.
- W2342766803 hasConcept C2781066024 @default.
- W2342766803 hasConcept C2781082017 @default.
- W2342766803 hasConcept C41008148 @default.
- W2342766803 hasConcept C522805319 @default.
- W2342766803 hasConcept C55493867 @default.
- W2342766803 hasConcept C58693492 @default.
- W2342766803 hasConcept C69738355 @default.
- W2342766803 hasConcept C71924100 @default.