Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343015385> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2343015385 abstract "Biometric technology refers to the automatic identification of a person using physical or behavioral traits associated with him/her. This technology can be an excellent candidate for developing intelligent systems such as speaker identification, facial recognition, signature verification...etc. Biometric technology can be used to design and develop automatic identity recognition systems, which are highly demanded and can be used in banking systems, employee identification, immigration, e-commerce…etc. The first phase of this research emphasizes on the development of automatic identity recognizer using speech biometric technology based on Artificial Intelligence (AI) techniques provided in MATLAB. For our phase one, speech data is collected from 20 (10 male and 10 female) participants in order to develop the recognizer. The speech data include utterances recorded for the English language digits (0 to 9), where each participant recorded each digit 3 times, which resulted in a total of 600 utterances for all participants. For our phase two, speech data is collected from 100 (50 male and 50 female) participants in order to develop the recognizer. The speech data is divided into text-dependent and text-independent data, whereby each participant selected his/her full name and recorded it 30 times, which makes up the text-independent data. On the other hand, the text-dependent data is represented by a short Arabic language story that contains 16 sentences, whereby every sentence was recorded by every participant 5 times. As a result, this new corpus contains 3000 (30 utterances * 100 speakers) sound files that represent the text-independent data using their full names and 8000 (16 sentences * 5 utterances * 100 speakers) sound files that represent the text-dependent data using the short story. For the purpose of our phase one of developing the automatic identity recognizer using speech, the 600 utterances have undergone the feature extraction and feature classification phases. The speech-based automatic identity recognition system is based on the most dominating feature extraction technique, which is known as the Mel-Frequency Cepstral Coefficient (MFCC). For feature classification phase, the system is based on the Vector Quantization (VQ) algorithm. Based on our experimental results, the highest accuracy achieved is 76%. The experimental results have shown acceptable performance, but can be improved further in our phase two using larger speech data size and better performance classification techniques such as the Hidden Markov Model (HMM)." @default.
- W2343015385 created "2016-06-24" @default.
- W2343015385 creator A5063416389 @default.
- W2343015385 creator A5072016749 @default.
- W2343015385 date "2016-04-28" @default.
- W2343015385 modified "2023-09-22" @default.
- W2343015385 title "Automatic Identity Recognition Using Speech Biometric" @default.
- W2343015385 cites W1124815407 @default.
- W2343015385 cites W12796654 @default.
- W2343015385 cites W1523682477 @default.
- W2343015385 cites W1560013842 @default.
- W2343015385 cites W1578856370 @default.
- W2343015385 cites W1973536121 @default.
- W2343015385 cites W2021204342 @default.
- W2343015385 cites W2040538856 @default.
- W2343015385 cites W2049098327 @default.
- W2343015385 cites W2049409082 @default.
- W2343015385 cites W2099124598 @default.
- W2343015385 cites W2102111797 @default.
- W2343015385 cites W2105804042 @default.
- W2343015385 cites W2113740595 @default.
- W2343015385 cites W2121083300 @default.
- W2343015385 cites W2135734929 @default.
- W2343015385 cites W2140959843 @default.
- W2343015385 cites W2143873470 @default.
- W2343015385 cites W2152534251 @default.
- W2343015385 cites W2158209024 @default.
- W2343015385 cites W2158849374 @default.
- W2343015385 cites W2159858406 @default.
- W2343015385 cites W2214060734 @default.
- W2343015385 cites W2216160444 @default.
- W2343015385 cites W247465095 @default.
- W2343015385 cites W2538838915 @default.
- W2343015385 cites W57926798 @default.
- W2343015385 cites W88822072 @default.
- W2343015385 cites W2744684689 @default.
- W2343015385 doi "https://doi.org/10.19044/esj.2016.v12n12p43" @default.
- W2343015385 hasPublicationYear "2016" @default.
- W2343015385 type Work @default.
- W2343015385 sameAs 2343015385 @default.
- W2343015385 citedByCount "1" @default.
- W2343015385 countsByYear W23430153852016 @default.
- W2343015385 crossrefType "journal-article" @default.
- W2343015385 hasAuthorship W2343015385A5063416389 @default.
- W2343015385 hasAuthorship W2343015385A5072016749 @default.
- W2343015385 hasBestOaLocation W23430153851 @default.
- W2343015385 hasConcept C116834253 @default.
- W2343015385 hasConcept C121332964 @default.
- W2343015385 hasConcept C133892786 @default.
- W2343015385 hasConcept C154945302 @default.
- W2343015385 hasConcept C184297639 @default.
- W2343015385 hasConcept C204321447 @default.
- W2343015385 hasConcept C24890656 @default.
- W2343015385 hasConcept C2777530160 @default.
- W2343015385 hasConcept C2778355321 @default.
- W2343015385 hasConcept C28490314 @default.
- W2343015385 hasConcept C41008148 @default.
- W2343015385 hasConcept C59822182 @default.
- W2343015385 hasConcept C86803240 @default.
- W2343015385 hasConceptScore W2343015385C116834253 @default.
- W2343015385 hasConceptScore W2343015385C121332964 @default.
- W2343015385 hasConceptScore W2343015385C133892786 @default.
- W2343015385 hasConceptScore W2343015385C154945302 @default.
- W2343015385 hasConceptScore W2343015385C184297639 @default.
- W2343015385 hasConceptScore W2343015385C204321447 @default.
- W2343015385 hasConceptScore W2343015385C24890656 @default.
- W2343015385 hasConceptScore W2343015385C2777530160 @default.
- W2343015385 hasConceptScore W2343015385C2778355321 @default.
- W2343015385 hasConceptScore W2343015385C28490314 @default.
- W2343015385 hasConceptScore W2343015385C41008148 @default.
- W2343015385 hasConceptScore W2343015385C59822182 @default.
- W2343015385 hasConceptScore W2343015385C86803240 @default.
- W2343015385 hasLocation W23430153851 @default.
- W2343015385 hasOpenAccess W2343015385 @default.
- W2343015385 hasPrimaryLocation W23430153851 @default.
- W2343015385 hasRelatedWork W158384662 @default.
- W2343015385 hasRelatedWork W1596208106 @default.
- W2343015385 hasRelatedWork W1988530429 @default.
- W2343015385 hasRelatedWork W2051884718 @default.
- W2343015385 hasRelatedWork W2098299590 @default.
- W2343015385 hasRelatedWork W2103034387 @default.
- W2343015385 hasRelatedWork W2123867168 @default.
- W2343015385 hasRelatedWork W2128658564 @default.
- W2343015385 hasRelatedWork W2134591869 @default.
- W2343015385 hasRelatedWork W2158874506 @default.
- W2343015385 hasRelatedWork W2811210119 @default.
- W2343015385 hasRelatedWork W1747580857 @default.
- W2343015385 hasRelatedWork W1993814939 @default.
- W2343015385 hasRelatedWork W2081566031 @default.
- W2343015385 hasRelatedWork W2751617770 @default.
- W2343015385 hasRelatedWork W2811672742 @default.
- W2343015385 hasRelatedWork W2814769593 @default.
- W2343015385 hasRelatedWork W2862828902 @default.
- W2343015385 hasRelatedWork W2941540118 @default.
- W2343015385 hasRelatedWork W898672192 @default.
- W2343015385 isParatext "false" @default.
- W2343015385 isRetracted "false" @default.
- W2343015385 magId "2343015385" @default.
- W2343015385 workType "article" @default.