Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343282753> ?p ?o ?g. }
- W2343282753 endingPage "1646" @default.
- W2343282753 startingPage "1636" @default.
- W2343282753 abstract "Brain magnetic resonance imaging (MRI) in patients with Multiple Sclerosis (MS) shows regions of signal abnormalities, named plaques or lesions. The spatial lesion distribution plays a major role for MS diagnosis. In this paper we present a 3D MS-lesion segmentation method based on an adaptive geometric brain model. We model the topological properties of the lesions and brain tissues in order to constrain the lesion segmentation to the white matter. As a result, the method is independent of an MRI atlas. We tested our method on the MICCAI MS grand challenge proposed in 2008 and achieved competitive results. In addition, we used an in-house dataset of 15 MS patients, for which we achieved best results in most distances in comparison to atlas based methods. Besides classical segmentation distances, we motivate and formulate a new distance to evaluate the quality of the lesion segmentation, while being robust with respect to minor inconsistencies at the boundary level of the ground truth annotation." @default.
- W2343282753 created "2016-06-24" @default.
- W2343282753 creator A5008401565 @default.
- W2343282753 creator A5016800347 @default.
- W2343282753 creator A5054699908 @default.
- W2343282753 creator A5066068003 @default.
- W2343282753 creator A5070290355 @default.
- W2343282753 creator A5087412483 @default.
- W2343282753 date "2016-07-01" @default.
- W2343282753 modified "2023-09-27" @default.
- W2343282753 title "White Matter MS-Lesion Segmentation<?Pub _newline ?>Using a Geometric Brain Model" @default.
- W2343282753 cites W138041180 @default.
- W2343282753 cites W1973457617 @default.
- W2343282753 cites W1975104912 @default.
- W2343282753 cites W2000308637 @default.
- W2343282753 cites W2009561775 @default.
- W2343282753 cites W2021204548 @default.
- W2343282753 cites W2028094999 @default.
- W2343282753 cites W2036564586 @default.
- W2343282753 cites W2047440597 @default.
- W2343282753 cites W2071881327 @default.
- W2343282753 cites W2081163504 @default.
- W2343282753 cites W2102848905 @default.
- W2343282753 cites W2110593503 @default.
- W2343282753 cites W2112282447 @default.
- W2343282753 cites W2120804060 @default.
- W2343282753 cites W2124471971 @default.
- W2343282753 cites W2140502500 @default.
- W2343282753 cites W2141461755 @default.
- W2343282753 cites W2143516773 @default.
- W2343282753 cites W2147032901 @default.
- W2343282753 cites W2147899407 @default.
- W2343282753 cites W2161913873 @default.
- W2343282753 cites W2168399612 @default.
- W2343282753 cites W2171187077 @default.
- W2343282753 cites W2621365959 @default.
- W2343282753 cites W341325887 @default.
- W2343282753 cites W60423602 @default.
- W2343282753 doi "https://doi.org/10.1109/tmi.2016.2522178" @default.
- W2343282753 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26829786" @default.
- W2343282753 hasPublicationYear "2016" @default.
- W2343282753 type Work @default.
- W2343282753 sameAs 2343282753 @default.
- W2343282753 citedByCount "20" @default.
- W2343282753 countsByYear W23432827532016 @default.
- W2343282753 countsByYear W23432827532017 @default.
- W2343282753 countsByYear W23432827532018 @default.
- W2343282753 countsByYear W23432827532019 @default.
- W2343282753 countsByYear W23432827532020 @default.
- W2343282753 countsByYear W23432827532021 @default.
- W2343282753 countsByYear W23432827532022 @default.
- W2343282753 countsByYear W23432827532023 @default.
- W2343282753 crossrefType "journal-article" @default.
- W2343282753 hasAuthorship W2343282753A5008401565 @default.
- W2343282753 hasAuthorship W2343282753A5016800347 @default.
- W2343282753 hasAuthorship W2343282753A5054699908 @default.
- W2343282753 hasAuthorship W2343282753A5066068003 @default.
- W2343282753 hasAuthorship W2343282753A5070290355 @default.
- W2343282753 hasAuthorship W2343282753A5087412483 @default.
- W2343282753 hasConcept C105702510 @default.
- W2343282753 hasConcept C118552586 @default.
- W2343282753 hasConcept C124504099 @default.
- W2343282753 hasConcept C126838900 @default.
- W2343282753 hasConcept C142724271 @default.
- W2343282753 hasConcept C143409427 @default.
- W2343282753 hasConcept C153180895 @default.
- W2343282753 hasConcept C154945302 @default.
- W2343282753 hasConcept C2776673561 @default.
- W2343282753 hasConcept C2780640218 @default.
- W2343282753 hasConcept C2780972224 @default.
- W2343282753 hasConcept C2781156865 @default.
- W2343282753 hasConcept C2781192897 @default.
- W2343282753 hasConcept C31972630 @default.
- W2343282753 hasConcept C41008148 @default.
- W2343282753 hasConcept C71924100 @default.
- W2343282753 hasConcept C89600930 @default.
- W2343282753 hasConceptScore W2343282753C105702510 @default.
- W2343282753 hasConceptScore W2343282753C118552586 @default.
- W2343282753 hasConceptScore W2343282753C124504099 @default.
- W2343282753 hasConceptScore W2343282753C126838900 @default.
- W2343282753 hasConceptScore W2343282753C142724271 @default.
- W2343282753 hasConceptScore W2343282753C143409427 @default.
- W2343282753 hasConceptScore W2343282753C153180895 @default.
- W2343282753 hasConceptScore W2343282753C154945302 @default.
- W2343282753 hasConceptScore W2343282753C2776673561 @default.
- W2343282753 hasConceptScore W2343282753C2780640218 @default.
- W2343282753 hasConceptScore W2343282753C2780972224 @default.
- W2343282753 hasConceptScore W2343282753C2781156865 @default.
- W2343282753 hasConceptScore W2343282753C2781192897 @default.
- W2343282753 hasConceptScore W2343282753C31972630 @default.
- W2343282753 hasConceptScore W2343282753C41008148 @default.
- W2343282753 hasConceptScore W2343282753C71924100 @default.
- W2343282753 hasConceptScore W2343282753C89600930 @default.
- W2343282753 hasIssue "7" @default.
- W2343282753 hasLocation W23432827531 @default.
- W2343282753 hasLocation W23432827532 @default.
- W2343282753 hasOpenAccess W2343282753 @default.
- W2343282753 hasPrimaryLocation W23432827531 @default.