Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343286437> ?p ?o ?g. }
- W2343286437 endingPage "4507" @default.
- W2343286437 startingPage "4496" @default.
- W2343286437 abstract "A comprehensive study of the encapsulation and dissolution of the poorly water-soluble drug ibuprofen (IBU) using two types of organic nanotubes (ONT-1 and ONT-2) was conducted. ONT-1 and ONT-2 had similar inner and outer diameters, but these surfaces were functionalized with different groups. IBU was encapsulated by each ONT via solvent evaporation. The amount of IBU in the ONTs was 9.1 and 29.2 wt % for ONT-1 and ONT-2, respectively. Dissolution of IBU from ONT-1 was very rapid, while from ONT-2 it was slower after the initial burst release. One-dimensional (1D) 1H, 13C, and two-dimensional (2D) 1H–13C solid-state NMR measurements using fast magic-angle spinning (MAS) at a rate of 40 kHz revealed the molecular state of the encapsulated IBU in each ONT. Extremely mobile IBU was observed inside the hollow nanosapce of both ONT-1 and ONT-2 using 13C MAS NMR with a single pulse (SP) method. Interestingly, 13C cross-polarization (CP) MAS NMR demonstrated that IBU also existed on the outer surface of both ONTs. The encapsulation ratios of IBU inside the hollow nanospaces versus on the outer surfaces were calculated by waveform separation to be approximately 1:1 for ONT-1 and 2:1 for ONT-2. Changes in 13C chemical shifts showed the intermolecular interactions between the carboxyl group of IBU and the amino group on the ONT-2 inner surface. The cationic ONT-2 could form the stronger electrostatic interactions with IBU in the hollow nanosapce than anionic ONT-1. On the other hand, 2D 1H–13C NMR indicated that the hydroxyl groups of the glucose unit on the outer surface of the ONTs interacted with the carboxyl group of IBU in both ONT-1 and ONT-2. The changes in peak shape and chemical shift of the ONT glucose group after IBU encapsulation were larger in ONT-2 than in ONT-1, indicating a stronger interaction between IBU and the outer surface of ONT-2. The smaller amount of IBU encapsulation and rapid IBU dissolution from ONT-1 could be due to the weak interactions both at the outer and inner surfaces. Meanwhile, the stronger interaction between IBU and the inner surface of ONT-2 could suppress IBU dissolution, although the IBU on the outer surface of ONT-2 was released soon after dispersal in water. This study demonstrates that the encapsulation amount and the dissolution rates of poorly water-soluble drugs, a class which makes up the majority of new drug candidates, can be controlled using the functional groups on the surfaces of ONTs by considering the host–guest interactions." @default.
- W2343286437 created "2016-06-24" @default.
- W2343286437 creator A5001066888 @default.
- W2343286437 creator A5015206704 @default.
- W2343286437 creator A5018782951 @default.
- W2343286437 creator A5030967805 @default.
- W2343286437 creator A5033804823 @default.
- W2343286437 creator A5050198344 @default.
- W2343286437 creator A5057401220 @default.
- W2343286437 creator A5061947125 @default.
- W2343286437 creator A5068931210 @default.
- W2343286437 creator A5090367649 @default.
- W2343286437 creator A5090660967 @default.
- W2343286437 date "2016-05-10" @default.
- W2343286437 modified "2023-10-11" @default.
- W2343286437 title "Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy" @default.
- W2343286437 cites W1970138670 @default.
- W2343286437 cites W1975145454 @default.
- W2343286437 cites W1977408469 @default.
- W2343286437 cites W1977820851 @default.
- W2343286437 cites W1980069819 @default.
- W2343286437 cites W1997509688 @default.
- W2343286437 cites W1998965048 @default.
- W2343286437 cites W2000568894 @default.
- W2343286437 cites W2003424313 @default.
- W2343286437 cites W2004278840 @default.
- W2343286437 cites W2013292045 @default.
- W2343286437 cites W2015631141 @default.
- W2343286437 cites W2019543237 @default.
- W2343286437 cites W2020751561 @default.
- W2343286437 cites W2022343539 @default.
- W2343286437 cites W2023083970 @default.
- W2343286437 cites W2030333038 @default.
- W2343286437 cites W2033550078 @default.
- W2343286437 cites W2035228662 @default.
- W2343286437 cites W2035366287 @default.
- W2343286437 cites W2037288322 @default.
- W2343286437 cites W2040668243 @default.
- W2343286437 cites W2044312809 @default.
- W2343286437 cites W2051257490 @default.
- W2343286437 cites W2052530399 @default.
- W2343286437 cites W2057184167 @default.
- W2343286437 cites W2064587706 @default.
- W2343286437 cites W2064802984 @default.
- W2343286437 cites W2071465630 @default.
- W2343286437 cites W2074163357 @default.
- W2343286437 cites W2079426992 @default.
- W2343286437 cites W2082920581 @default.
- W2343286437 cites W2085605828 @default.
- W2343286437 cites W2086386432 @default.
- W2343286437 cites W2101755751 @default.
- W2343286437 cites W2104619281 @default.
- W2343286437 cites W2104693377 @default.
- W2343286437 cites W2137344685 @default.
- W2343286437 cites W2151032526 @default.
- W2343286437 cites W2163196876 @default.
- W2343286437 cites W2169077097 @default.
- W2343286437 cites W2313618872 @default.
- W2343286437 cites W2314105565 @default.
- W2343286437 cites W2325021837 @default.
- W2343286437 cites W2325492199 @default.
- W2343286437 cites W2327194604 @default.
- W2343286437 cites W2329827571 @default.
- W2343286437 cites W2331374949 @default.
- W2343286437 doi "https://doi.org/10.1021/acs.jpcb.6b00939" @default.
- W2343286437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27123961" @default.
- W2343286437 hasPublicationYear "2016" @default.
- W2343286437 type Work @default.
- W2343286437 sameAs 2343286437 @default.
- W2343286437 citedByCount "22" @default.
- W2343286437 countsByYear W23432864372017 @default.
- W2343286437 countsByYear W23432864372018 @default.
- W2343286437 countsByYear W23432864372019 @default.
- W2343286437 countsByYear W23432864372020 @default.
- W2343286437 countsByYear W23432864372021 @default.
- W2343286437 countsByYear W23432864372022 @default.
- W2343286437 crossrefType "journal-article" @default.
- W2343286437 hasAuthorship W2343286437A5001066888 @default.
- W2343286437 hasAuthorship W2343286437A5015206704 @default.
- W2343286437 hasAuthorship W2343286437A5018782951 @default.
- W2343286437 hasAuthorship W2343286437A5030967805 @default.
- W2343286437 hasAuthorship W2343286437A5033804823 @default.
- W2343286437 hasAuthorship W2343286437A5050198344 @default.
- W2343286437 hasAuthorship W2343286437A5057401220 @default.
- W2343286437 hasAuthorship W2343286437A5061947125 @default.
- W2343286437 hasAuthorship W2343286437A5068931210 @default.
- W2343286437 hasAuthorship W2343286437A5090367649 @default.
- W2343286437 hasAuthorship W2343286437A5090660967 @default.
- W2343286437 hasConcept C103319777 @default.
- W2343286437 hasConcept C113196181 @default.
- W2343286437 hasConcept C121332964 @default.
- W2343286437 hasConcept C13965031 @default.
- W2343286437 hasConcept C147789679 @default.
- W2343286437 hasConcept C153202636 @default.
- W2343286437 hasConcept C163111631 @default.
- W2343286437 hasConcept C166950319 @default.
- W2343286437 hasConcept C178790620 @default.
- W2343286437 hasConcept C185592680 @default.