Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343355535> ?p ?o ?g. }
- W2343355535 endingPage "A1194" @default.
- W2343355535 startingPage "A1171" @default.
- W2343355535 abstract "In this paper, we address the temporal energy growth associated with numerical approximations of the perfectly matched layer (PML) for Maxwell's equations in first order form. In the literature, several studies have shown that a numerical method which is stable in the absence of the PML can become unstable when the PML is introduced. We demonstrate in this paper that this instability can be directly related to numerical treatment of boundary conditions in the PML. First, at the continuous level, we establish the stability of the constant coefficient initial boundary value problem for the PML. To enable the construction of stable numerical boundary procedures, we derive energy estimates for the PML in the Laplace space. Second, we develop a high order accurate and stable numerical approximation for the PML using summation-by-parts finite difference operators to approximate spatial derivatives and weak enforcement of boundary conditions using penalties. By constructing analogous discrete energy estimates we show discrete stability and convergence of the numerical method. Numerical experiments verify the theoretical results." @default.
- W2343355535 created "2016-06-24" @default.
- W2343355535 creator A5057355656 @default.
- W2343355535 date "2016-01-01" @default.
- W2343355535 modified "2023-09-26" @default.
- W2343355535 title "The Role of Numerical Boundary Procedures in the Stability of Perfectly Matched Layers" @default.
- W2343355535 cites W1549063999 @default.
- W2343355535 cites W1770498610 @default.
- W2343355535 cites W1965176603 @default.
- W2343355535 cites W1965605578 @default.
- W2343355535 cites W1965855805 @default.
- W2343355535 cites W1969627816 @default.
- W2343355535 cites W1972670182 @default.
- W2343355535 cites W1973342667 @default.
- W2343355535 cites W1987499314 @default.
- W2343355535 cites W1988028777 @default.
- W2343355535 cites W1990408543 @default.
- W2343355535 cites W1994751539 @default.
- W2343355535 cites W1997271111 @default.
- W2343355535 cites W2003017040 @default.
- W2343355535 cites W2004993859 @default.
- W2343355535 cites W2007212379 @default.
- W2343355535 cites W2011117290 @default.
- W2343355535 cites W2018048720 @default.
- W2343355535 cites W2036694484 @default.
- W2343355535 cites W2043581458 @default.
- W2343355535 cites W2047212974 @default.
- W2343355535 cites W2049068370 @default.
- W2343355535 cites W2049991352 @default.
- W2343355535 cites W2068049159 @default.
- W2343355535 cites W2070501079 @default.
- W2343355535 cites W2081997759 @default.
- W2343355535 cites W2099891394 @default.
- W2343355535 cites W2105998108 @default.
- W2343355535 cites W2110814648 @default.
- W2343355535 cites W2120016012 @default.
- W2343355535 cites W2137687018 @default.
- W2343355535 cites W2145888055 @default.
- W2343355535 cites W2150323068 @default.
- W2343355535 cites W2745604712 @default.
- W2343355535 cites W2964255313 @default.
- W2343355535 cites W3022326838 @default.
- W2343355535 doi "https://doi.org/10.1137/140976443" @default.
- W2343355535 hasPublicationYear "2016" @default.
- W2343355535 type Work @default.
- W2343355535 sameAs 2343355535 @default.
- W2343355535 citedByCount "10" @default.
- W2343355535 countsByYear W23433555352013 @default.
- W2343355535 countsByYear W23433555352017 @default.
- W2343355535 countsByYear W23433555352019 @default.
- W2343355535 countsByYear W23433555352020 @default.
- W2343355535 countsByYear W23433555352021 @default.
- W2343355535 countsByYear W23433555352023 @default.
- W2343355535 crossrefType "journal-article" @default.
- W2343355535 hasAuthorship W2343355535A5057355656 @default.
- W2343355535 hasBestOaLocation W23433555352 @default.
- W2343355535 hasConcept C112972136 @default.
- W2343355535 hasConcept C119857082 @default.
- W2343355535 hasConcept C121332964 @default.
- W2343355535 hasConcept C134306372 @default.
- W2343355535 hasConcept C162324750 @default.
- W2343355535 hasConcept C16895185 @default.
- W2343355535 hasConcept C176321772 @default.
- W2343355535 hasConcept C181330731 @default.
- W2343355535 hasConcept C182310444 @default.
- W2343355535 hasConcept C205951836 @default.
- W2343355535 hasConcept C207821765 @default.
- W2343355535 hasConcept C2777303404 @default.
- W2343355535 hasConcept C28826006 @default.
- W2343355535 hasConcept C33923547 @default.
- W2343355535 hasConcept C41008148 @default.
- W2343355535 hasConcept C48753275 @default.
- W2343355535 hasConcept C50522688 @default.
- W2343355535 hasConcept C57879066 @default.
- W2343355535 hasConcept C62354387 @default.
- W2343355535 hasConcept C71477052 @default.
- W2343355535 hasConcept C97937538 @default.
- W2343355535 hasConceptScore W2343355535C112972136 @default.
- W2343355535 hasConceptScore W2343355535C119857082 @default.
- W2343355535 hasConceptScore W2343355535C121332964 @default.
- W2343355535 hasConceptScore W2343355535C134306372 @default.
- W2343355535 hasConceptScore W2343355535C162324750 @default.
- W2343355535 hasConceptScore W2343355535C16895185 @default.
- W2343355535 hasConceptScore W2343355535C176321772 @default.
- W2343355535 hasConceptScore W2343355535C181330731 @default.
- W2343355535 hasConceptScore W2343355535C182310444 @default.
- W2343355535 hasConceptScore W2343355535C205951836 @default.
- W2343355535 hasConceptScore W2343355535C207821765 @default.
- W2343355535 hasConceptScore W2343355535C2777303404 @default.
- W2343355535 hasConceptScore W2343355535C28826006 @default.
- W2343355535 hasConceptScore W2343355535C33923547 @default.
- W2343355535 hasConceptScore W2343355535C41008148 @default.
- W2343355535 hasConceptScore W2343355535C48753275 @default.
- W2343355535 hasConceptScore W2343355535C50522688 @default.
- W2343355535 hasConceptScore W2343355535C57879066 @default.
- W2343355535 hasConceptScore W2343355535C62354387 @default.
- W2343355535 hasConceptScore W2343355535C71477052 @default.
- W2343355535 hasConceptScore W2343355535C97937538 @default.