Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343695888> ?p ?o ?g. }
- W2343695888 abstract "Plants develop sustainable defence responses to pathogen attacks through resistance (R) genes contributing to effector-triggered immunity (ETI). TIR-NB-LRR genes (TNL genes) constitute a major family of ETI R genes in dicots. The putative functions or roles of the TIR, NB and LRR domains of the proteins they encode (TNLs) are well documented, but TNLs also have a poorly characterised C-terminal region, the function of which is unknown in most cases. We characterised this prevalent stress-response protein family in a perennial plant, using the genome of peach (Prunus persica), the model Prunus species. The first TNL gene from this genus to be cloned, the Ma gene, confers complete-spectrum resistance to root-knot nematodes (RKNs) and encodes a protein with a huge C-terminal region with five duplicated post-LRR (PL) domains. This gene was the cornerstone of this study. We investigated the role of this C-terminal region, by first describing the frequency, distribution and structural characteristics of i) TNL genes and ii) their PL domains in the peach genome, using the v1.0 Sanger sequence together with the v2.0 sequence, which has better genome annotation due to the incorporation of transcriptomic data. We detected 195 predicted TNL genes from the eight peach chromosomes: 85 % of these genes mapped to chromosomes 1, 2, 7 and 8. We reconstructed the putative structure of the predicted exons of all the TNL genes identified, and it was possible to retrieve the PL domains among two thirds of the TNL genes. We used our predicted TNL gene sequences to develop an annotation file for use with the Gbrowse tool in the v2.0 genome. The use of these annotation data made it possible to detect transcribed PL sequences in two Prunus species. We then used consensus sequences defined on the basis of 124 PL domains to design specific motifs, and we found that the use of these motifs significantly increased the numbers of PL domains and correlative TNL genes detected in diverse dicot genomes. Based on PL signatures, we showed that TNL genes with multiple PL domains were rare in peach and the other plants screened. The five-PL domain pattern is probably unique to Ma and its orthologues within Prunus and closely related genera from the Rosaceae and was probably inherited from the common ancestor of these plants in the subfamily Spiraeoideae. The first physical TNL gene map for Prunus species can be used for the further investigation of R genes in this genus. The PL signature motifs are a complementary tool for the detection of TNL R genes in dicots. The low degree of similarity between PL domains and the neighbouring LRR exons and the specificity of PL signature motifs suggest that PL and LRR domains have different origins, with PL domains being specific to TNL genes, and possibly essential to the functioning of these genes in some cases. Investigations of the role of the oversized Ma PL region, in ligand binding or intramolecular interactions for example, may help to enrich our understanding of NB-LRR-mediated plant immunity to RKNs." @default.
- W2343695888 created "2016-06-24" @default.
- W2343695888 creator A5053179632 @default.
- W2343695888 creator A5056848247 @default.
- W2343695888 date "2016-04-30" @default.
- W2343695888 modified "2023-10-06" @default.
- W2343695888 title "TNL genes in peach: insights into the post-LRR domain" @default.
- W2343695888 cites W1486251351 @default.
- W2343695888 cites W1562306981 @default.
- W2343695888 cites W1963837218 @default.
- W2343695888 cites W1973328229 @default.
- W2343695888 cites W1992154934 @default.
- W2343695888 cites W1994829204 @default.
- W2343695888 cites W1998907038 @default.
- W2343695888 cites W1999214874 @default.
- W2343695888 cites W2003412276 @default.
- W2343695888 cites W2003912358 @default.
- W2343695888 cites W2010854320 @default.
- W2343695888 cites W2015338902 @default.
- W2343695888 cites W2022366078 @default.
- W2343695888 cites W2025435489 @default.
- W2343695888 cites W2028254759 @default.
- W2343695888 cites W2031341392 @default.
- W2343695888 cites W2040125965 @default.
- W2343695888 cites W2040335548 @default.
- W2343695888 cites W2041631141 @default.
- W2343695888 cites W2043298705 @default.
- W2343695888 cites W2045244426 @default.
- W2343695888 cites W2046838847 @default.
- W2343695888 cites W2056830064 @default.
- W2343695888 cites W2060531604 @default.
- W2343695888 cites W2068422180 @default.
- W2343695888 cites W2073044944 @default.
- W2343695888 cites W2074557265 @default.
- W2343695888 cites W2078153497 @default.
- W2343695888 cites W2085699671 @default.
- W2343695888 cites W2089759854 @default.
- W2343695888 cites W2090179972 @default.
- W2343695888 cites W2090881705 @default.
- W2343695888 cites W2099700799 @default.
- W2343695888 cites W2103508580 @default.
- W2343695888 cites W2104020627 @default.
- W2343695888 cites W2108780882 @default.
- W2343695888 cites W2110768663 @default.
- W2343695888 cites W2113030015 @default.
- W2343695888 cites W2115483901 @default.
- W2343695888 cites W2117179531 @default.
- W2343695888 cites W2118201962 @default.
- W2343695888 cites W2120202106 @default.
- W2343695888 cites W2123679376 @default.
- W2343695888 cites W2124270664 @default.
- W2343695888 cites W2130029642 @default.
- W2343695888 cites W2131616418 @default.
- W2343695888 cites W2136150719 @default.
- W2343695888 cites W2138946332 @default.
- W2343695888 cites W2140105907 @default.
- W2343695888 cites W2140177375 @default.
- W2343695888 cites W2142810388 @default.
- W2343695888 cites W2153558019 @default.
- W2343695888 cites W2156437751 @default.
- W2343695888 cites W2157044094 @default.
- W2343695888 cites W2157924663 @default.
- W2343695888 cites W2161552606 @default.
- W2343695888 cites W2161745583 @default.
- W2343695888 cites W2162515800 @default.
- W2343695888 cites W2164097303 @default.
- W2343695888 cites W2170189269 @default.
- W2343695888 cites W2171192872 @default.
- W2343695888 cites W2186151298 @default.
- W2343695888 doi "https://doi.org/10.1186/s12864-016-2635-0" @default.
- W2343695888 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4851768" @default.
- W2343695888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27129402" @default.
- W2343695888 hasPublicationYear "2016" @default.
- W2343695888 type Work @default.
- W2343695888 sameAs 2343695888 @default.
- W2343695888 citedByCount "28" @default.
- W2343695888 countsByYear W23436958882017 @default.
- W2343695888 countsByYear W23436958882018 @default.
- W2343695888 countsByYear W23436958882019 @default.
- W2343695888 countsByYear W23436958882020 @default.
- W2343695888 countsByYear W23436958882021 @default.
- W2343695888 countsByYear W23436958882022 @default.
- W2343695888 countsByYear W23436958882023 @default.
- W2343695888 crossrefType "journal-article" @default.
- W2343695888 hasAuthorship W2343695888A5053179632 @default.
- W2343695888 hasAuthorship W2343695888A5056848247 @default.
- W2343695888 hasBestOaLocation W23436958881 @default.
- W2343695888 hasConcept C104317684 @default.
- W2343695888 hasConcept C141231307 @default.
- W2343695888 hasConcept C2779999212 @default.
- W2343695888 hasConcept C51679486 @default.
- W2343695888 hasConcept C54355233 @default.
- W2343695888 hasConcept C5911399 @default.
- W2343695888 hasConcept C76818968 @default.
- W2343695888 hasConcept C86803240 @default.
- W2343695888 hasConcept C93678976 @default.
- W2343695888 hasConceptScore W2343695888C104317684 @default.
- W2343695888 hasConceptScore W2343695888C141231307 @default.
- W2343695888 hasConceptScore W2343695888C2779999212 @default.
- W2343695888 hasConceptScore W2343695888C51679486 @default.