Matches in SemOpenAlex for { <https://semopenalex.org/work/W2343958847> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2343958847 endingPage "2910" @default.
- W2343958847 startingPage "2899" @default.
- W2343958847 abstract "Classification of temporal data sequences is a fundamental branch of machine learning with a broad range of real world applications. Since the dimensionality of temporal data is significantly larger than static data, and its modeling and interpreting is more complicated, performing classification and clustering on temporal data is more complex as well. Hidden Markov models (HMMs) are well-known statistical models for modeling and analysis of sequence data. Besides, ensemble methods, which employ multiple models to obtain the target model, revealed good performances in the conducted experiments. All these facts are a high level of motivation to employ HMM ensembles in the task of classification and clustering of time series data. So far, no effective classification and clustering method based on HMM ensembles has been proposed. Moreover, employing the limited existing HMM ensemble methods has trouble separating models of distinct classes as a vital task. In this paper, according to previous points a new framework based on HMM ensembles for classification and clustering is proposed. In addition to its strong theoretical background by employing the Rényi entropy for ensemble learning procedure, the main contribution of the proposed method is addressing HMM-based methods problem in separating models of distinct classes by considering the inverse emission matrix of the opposite class to build an opposite model. The proposed algorithms perform more effectively compared to other methods especially other HMM ensemble-based methods. Moreover, the proposed clustering framework, which derives benefits from both similarity-based and model-based methods, together with the Rényi-based ensemble method revealed its superiority in several measurements." @default.
- W2343958847 created "2016-06-24" @default.
- W2343958847 creator A5067878883 @default.
- W2343958847 creator A5069799892 @default.
- W2343958847 creator A5081857712 @default.
- W2343958847 date "2016-12-01" @default.
- W2343958847 modified "2023-10-12" @default.
- W2343958847 title "Creating Discriminative Models for Time Series Classification and Clustering by HMM Ensembles" @default.
- W2343958847 cites W1491993714 @default.
- W2343958847 cites W1537340563 @default.
- W2343958847 cites W1544435011 @default.
- W2343958847 cites W1585151117 @default.
- W2343958847 cites W1877570817 @default.
- W2343958847 cites W1963561750 @default.
- W2343958847 cites W1971074521 @default.
- W2343958847 cites W1989237035 @default.
- W2343958847 cites W1995639191 @default.
- W2343958847 cites W2007321142 @default.
- W2343958847 cites W2010485891 @default.
- W2343958847 cites W2024581784 @default.
- W2343958847 cites W2032005922 @default.
- W2343958847 cites W2037799522 @default.
- W2343958847 cites W2037822914 @default.
- W2343958847 cites W2047354067 @default.
- W2343958847 cites W2077574412 @default.
- W2343958847 cites W2086699924 @default.
- W2343958847 cites W2089894294 @default.
- W2343958847 cites W2125838338 @default.
- W2343958847 cites W2127551029 @default.
- W2343958847 cites W2137997715 @default.
- W2343958847 cites W2140836279 @default.
- W2343958847 cites W2140870987 @default.
- W2343958847 cites W2149098830 @default.
- W2343958847 cites W2167814407 @default.
- W2343958847 cites W2168175751 @default.
- W2343958847 cites W2169970929 @default.
- W2343958847 cites W2171850596 @default.
- W2343958847 cites W4236088841 @default.
- W2343958847 cites W58346954 @default.
- W2343958847 doi "https://doi.org/10.1109/tcyb.2015.2492920" @default.
- W2343958847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26540725" @default.
- W2343958847 hasPublicationYear "2016" @default.
- W2343958847 type Work @default.
- W2343958847 sameAs 2343958847 @default.
- W2343958847 citedByCount "16" @default.
- W2343958847 countsByYear W23439588472018 @default.
- W2343958847 countsByYear W23439588472019 @default.
- W2343958847 countsByYear W23439588472020 @default.
- W2343958847 countsByYear W23439588472021 @default.
- W2343958847 countsByYear W23439588472023 @default.
- W2343958847 crossrefType "journal-article" @default.
- W2343958847 hasAuthorship W2343958847A5067878883 @default.
- W2343958847 hasAuthorship W2343958847A5069799892 @default.
- W2343958847 hasAuthorship W2343958847A5081857712 @default.
- W2343958847 hasConcept C111030470 @default.
- W2343958847 hasConcept C119857082 @default.
- W2343958847 hasConcept C124101348 @default.
- W2343958847 hasConcept C153180895 @default.
- W2343958847 hasConcept C154945302 @default.
- W2343958847 hasConcept C23224414 @default.
- W2343958847 hasConcept C41008148 @default.
- W2343958847 hasConcept C45942800 @default.
- W2343958847 hasConcept C73555534 @default.
- W2343958847 hasConcept C97931131 @default.
- W2343958847 hasConceptScore W2343958847C111030470 @default.
- W2343958847 hasConceptScore W2343958847C119857082 @default.
- W2343958847 hasConceptScore W2343958847C124101348 @default.
- W2343958847 hasConceptScore W2343958847C153180895 @default.
- W2343958847 hasConceptScore W2343958847C154945302 @default.
- W2343958847 hasConceptScore W2343958847C23224414 @default.
- W2343958847 hasConceptScore W2343958847C41008148 @default.
- W2343958847 hasConceptScore W2343958847C45942800 @default.
- W2343958847 hasConceptScore W2343958847C73555534 @default.
- W2343958847 hasConceptScore W2343958847C97931131 @default.
- W2343958847 hasIssue "12" @default.
- W2343958847 hasLocation W23439588471 @default.
- W2343958847 hasLocation W23439588472 @default.
- W2343958847 hasOpenAccess W2343958847 @default.
- W2343958847 hasPrimaryLocation W23439588471 @default.
- W2343958847 hasRelatedWork W2024160000 @default.
- W2343958847 hasRelatedWork W2061273563 @default.
- W2343958847 hasRelatedWork W2134071121 @default.
- W2343958847 hasRelatedWork W2134999511 @default.
- W2343958847 hasRelatedWork W2285052147 @default.
- W2343958847 hasRelatedWork W2675891389 @default.
- W2343958847 hasRelatedWork W2729514902 @default.
- W2343958847 hasRelatedWork W2773500201 @default.
- W2343958847 hasRelatedWork W3003379904 @default.
- W2343958847 hasRelatedWork W4287995534 @default.
- W2343958847 hasVolume "46" @default.
- W2343958847 isParatext "false" @default.
- W2343958847 isRetracted "false" @default.
- W2343958847 magId "2343958847" @default.
- W2343958847 workType "article" @default.