Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344169638> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2344169638 endingPage "105" @default.
- W2344169638 startingPage "83" @default.
- W2344169638 abstract "의료IT 서비스의 유망 분야인 정신건강 증진을 위한 주관적 웰빙 서비스(subjective well-being service) 구현의 핵심은 개인의 주관적 웰빙 상태를 정확하고 무구속적이며 비용 효율적으로 측정하는 것인데 이를 위해 보편적으로 사용되는 설문지에 의한 자기보고나 신체부착형 센서 기반의 측정 방법론은 정확성은 뛰어나나 비용효율성과 무구속성에 취약하다. 비용효율성과 무구속성을 보강하기 위한 온라인 텍스트 기반의 측정 방법은 사전에 준비된 감정어 어휘만을 사용함으로써 상황에 따라 감정어로 볼 수 있는 이른바 상황적 긍부정성(contextual polarity)을 고려하지 못하여 측정 정확도가 낮다. 한편 기존의 상황적 긍부정성을 활용한 감성분석으로는 주관적 웰빙 상태인 맥락에서의 감성분석을 할 수 있는 감정어휘사전이나 온톨로지가 구축되어 있지 않다. 더구나 온톨로지 구축도 매우 노력이 소요되는 작업이다. 따라서 본 연구의 목적은 온라인상에 사용자의 의견이 표출된 비정형 텍스트로부터 주관적 웰빙과 관련한 상황감정어를 추출하고, 이를 근거로 상황적 긍부정성 파악의 정확도를 개선하는 방법을 제안하는 것이다. 기본 절차는 다음과 같다. 먼저 일반 감정어휘사전을 준비한다. 본 연구에서는 가장 대표적인 디지털 감정어휘사전인 SentiWordNet을 사용하였다. 둘째, 정신건강지수를 동적으로 추정하는데 필요한 비정형 자료인 Corpora를 온라인 서베이로 확보하였다. 셋째, Corpora로부터 세 가지 종류의 자원을 확보하였다. 넷째, 자원을 입력변수로 하고 특정 정신건강 상태의 지수값을 종속변수로 하는 추론 모형을 구축하고 추론 규칙을 추출하였다. 마지막으로, 추론 규칙으로 정신건강 상태를 추론하였다. 본 연구는 감정을 분석함에 있어, 기존의 연구들과 달리 상황적 감정어를 적용하여 특정 도메인에 따라 다양한 감정 어휘를 파악할 수 있다는 점에서 독창성이 있다. Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner." @default.
- W2344169638 created "2016-06-24" @default.
- W2344169638 creator A5000774249 @default.
- W2344169638 creator A5017744975 @default.
- W2344169638 creator A5088891802 @default.
- W2344169638 date "2016-03-31" @default.
- W2344169638 modified "2023-09-23" @default.
- W2344169638 title "Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being" @default.
- W2344169638 cites W1612608508 @default.
- W2344169638 cites W1715815242 @default.
- W2344169638 cites W1832760921 @default.
- W2344169638 cites W1992408044 @default.
- W2344169638 cites W1993933064 @default.
- W2344169638 cites W2013790492 @default.
- W2344169638 cites W2014902591 @default.
- W2344169638 cites W2016089260 @default.
- W2344169638 cites W2053694565 @default.
- W2344169638 cites W2079635178 @default.
- W2344169638 cites W2099366530 @default.
- W2344169638 cites W2148905283 @default.
- W2344169638 cites W2168625136 @default.
- W2344169638 cites W2282673542 @default.
- W2344169638 cites W3124068636 @default.
- W2344169638 cites W3126140319 @default.
- W2344169638 doi "https://doi.org/10.13088/jiis.2016.22.1.083" @default.
- W2344169638 hasPublicationYear "2016" @default.
- W2344169638 type Work @default.
- W2344169638 sameAs 2344169638 @default.
- W2344169638 citedByCount "0" @default.
- W2344169638 crossrefType "journal-article" @default.
- W2344169638 hasAuthorship W2344169638A5000774249 @default.
- W2344169638 hasAuthorship W2344169638A5017744975 @default.
- W2344169638 hasAuthorship W2344169638A5088891802 @default.
- W2344169638 hasBestOaLocation W23441696381 @default.
- W2344169638 hasConcept C121934690 @default.
- W2344169638 hasConcept C1491633281 @default.
- W2344169638 hasConcept C154945302 @default.
- W2344169638 hasConcept C177264268 @default.
- W2344169638 hasConcept C199360897 @default.
- W2344169638 hasConcept C204321447 @default.
- W2344169638 hasConcept C2777361361 @default.
- W2344169638 hasConcept C41008148 @default.
- W2344169638 hasConcept C54355233 @default.
- W2344169638 hasConcept C66402592 @default.
- W2344169638 hasConcept C86803240 @default.
- W2344169638 hasConceptScore W2344169638C121934690 @default.
- W2344169638 hasConceptScore W2344169638C1491633281 @default.
- W2344169638 hasConceptScore W2344169638C154945302 @default.
- W2344169638 hasConceptScore W2344169638C177264268 @default.
- W2344169638 hasConceptScore W2344169638C199360897 @default.
- W2344169638 hasConceptScore W2344169638C204321447 @default.
- W2344169638 hasConceptScore W2344169638C2777361361 @default.
- W2344169638 hasConceptScore W2344169638C41008148 @default.
- W2344169638 hasConceptScore W2344169638C54355233 @default.
- W2344169638 hasConceptScore W2344169638C66402592 @default.
- W2344169638 hasConceptScore W2344169638C86803240 @default.
- W2344169638 hasIssue "1" @default.
- W2344169638 hasLocation W23441696381 @default.
- W2344169638 hasOpenAccess W2344169638 @default.
- W2344169638 hasPrimaryLocation W23441696381 @default.
- W2344169638 hasRelatedWork W114213598 @default.
- W2344169638 hasRelatedWork W116547091 @default.
- W2344169638 hasRelatedWork W1981409820 @default.
- W2344169638 hasRelatedWork W2063559028 @default.
- W2344169638 hasRelatedWork W2130424481 @default.
- W2344169638 hasRelatedWork W2144495291 @default.
- W2344169638 hasRelatedWork W2294500472 @default.
- W2344169638 hasRelatedWork W2405306037 @default.
- W2344169638 hasRelatedWork W3041014105 @default.
- W2344169638 hasRelatedWork W3085814693 @default.
- W2344169638 hasVolume "22" @default.
- W2344169638 isParatext "false" @default.
- W2344169638 isRetracted "false" @default.
- W2344169638 magId "2344169638" @default.
- W2344169638 workType "article" @default.