Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344474403> ?p ?o ?g. }
- W2344474403 endingPage "1333" @default.
- W2344474403 startingPage "1320" @default.
- W2344474403 abstract "The main focus of this paper is on the analysis and integrated design of $mathcal {L}_2$ observer-based fault detection (FD) systems for discrete-time nonlinear industrial processes. To gain a deeper insight into this FD framework, the existence condition is introduced first. Then, an integrated design of $mathcal {L}_2$ observer-based FD approach is realized by solving the proposed existence condition with the aid of Takagi–Sugeno fuzzy dynamic modeling technique and piecewise-fuzzy Lyapunov functions. Most importantly, a weighted piecewise-fuzzy observer-based residual generator is proposed, aiming at achieving an optimal integration of residual evaluation and threshold computation into FD systems. The core of this approach is to make use of the knowledge provided by fuzzy models of each local region and then to weight the local residual signal by means of different weighting factors. In comparison with the standard norm-based fuzzy observer-based FD methods, the proposed scheme may lead to a significant improvement of the FD performance. In the end, the effectiveness of the proposed method is verified by a numerical example and a case study on the laboratory setup of continuous stirred tank heater plant." @default.
- W2344474403 created "2016-06-24" @default.
- W2344474403 creator A5000927257 @default.
- W2344474403 creator A5037495255 @default.
- W2344474403 creator A5046071840 @default.
- W2344474403 creator A5050453488 @default.
- W2344474403 creator A5084559824 @default.
- W2344474403 date "2016-12-01" @default.
- W2344474403 modified "2023-10-14" @default.
- W2344474403 title "Weighted Fuzzy Observer-Based Fault Detection Approach for Discrete-Time Nonlinear Systems via Piecewise-Fuzzy Lyapunov Functions" @default.
- W2344474403 cites W1510598017 @default.
- W2344474403 cites W1532932064 @default.
- W2344474403 cites W1654016072 @default.
- W2344474403 cites W1965256895 @default.
- W2344474403 cites W1966863755 @default.
- W2344474403 cites W1983968342 @default.
- W2344474403 cites W1984672166 @default.
- W2344474403 cites W1991306251 @default.
- W2344474403 cites W1995060100 @default.
- W2344474403 cites W2004358784 @default.
- W2344474403 cites W2026755043 @default.
- W2344474403 cites W202677556 @default.
- W2344474403 cites W2034201789 @default.
- W2344474403 cites W2043907829 @default.
- W2344474403 cites W2052716544 @default.
- W2344474403 cites W2061160706 @default.
- W2344474403 cites W2073224717 @default.
- W2344474403 cites W2089459209 @default.
- W2344474403 cites W2091213453 @default.
- W2344474403 cites W2096589898 @default.
- W2344474403 cites W2101959500 @default.
- W2344474403 cites W2103255644 @default.
- W2344474403 cites W2107577395 @default.
- W2344474403 cites W2109483761 @default.
- W2344474403 cites W2110178402 @default.
- W2344474403 cites W2112801564 @default.
- W2344474403 cites W2125275590 @default.
- W2344474403 cites W2126525166 @default.
- W2344474403 cites W2129616157 @default.
- W2344474403 cites W2131996154 @default.
- W2344474403 cites W2132029223 @default.
- W2344474403 cites W2144009458 @default.
- W2344474403 cites W2148885430 @default.
- W2344474403 cites W2150005359 @default.
- W2344474403 cites W2158278781 @default.
- W2344474403 cites W2158323699 @default.
- W2344474403 cites W2163300739 @default.
- W2344474403 cites W2165626406 @default.
- W2344474403 cites W2169507230 @default.
- W2344474403 cites W3149018422 @default.
- W2344474403 cites W4213345774 @default.
- W2344474403 cites W4231197448 @default.
- W2344474403 cites W4249625715 @default.
- W2344474403 doi "https://doi.org/10.1109/tfuzz.2016.2514371" @default.
- W2344474403 hasPublicationYear "2016" @default.
- W2344474403 type Work @default.
- W2344474403 sameAs 2344474403 @default.
- W2344474403 citedByCount "120" @default.
- W2344474403 countsByYear W23444744032016 @default.
- W2344474403 countsByYear W23444744032017 @default.
- W2344474403 countsByYear W23444744032018 @default.
- W2344474403 countsByYear W23444744032019 @default.
- W2344474403 countsByYear W23444744032020 @default.
- W2344474403 countsByYear W23444744032021 @default.
- W2344474403 countsByYear W23444744032022 @default.
- W2344474403 countsByYear W23444744032023 @default.
- W2344474403 crossrefType "journal-article" @default.
- W2344474403 hasAuthorship W2344474403A5000927257 @default.
- W2344474403 hasAuthorship W2344474403A5037495255 @default.
- W2344474403 hasAuthorship W2344474403A5046071840 @default.
- W2344474403 hasAuthorship W2344474403A5050453488 @default.
- W2344474403 hasAuthorship W2344474403A5084559824 @default.
- W2344474403 hasConcept C121332964 @default.
- W2344474403 hasConcept C134306372 @default.
- W2344474403 hasConcept C152745839 @default.
- W2344474403 hasConcept C154945302 @default.
- W2344474403 hasConcept C158622935 @default.
- W2344474403 hasConcept C164660894 @default.
- W2344474403 hasConcept C172707124 @default.
- W2344474403 hasConcept C195975749 @default.
- W2344474403 hasConcept C2775924081 @default.
- W2344474403 hasConcept C2780704645 @default.
- W2344474403 hasConcept C2983030100 @default.
- W2344474403 hasConcept C33923547 @default.
- W2344474403 hasConcept C41008148 @default.
- W2344474403 hasConcept C47446073 @default.
- W2344474403 hasConcept C58166 @default.
- W2344474403 hasConcept C60640748 @default.
- W2344474403 hasConcept C62520636 @default.
- W2344474403 hasConceptScore W2344474403C121332964 @default.
- W2344474403 hasConceptScore W2344474403C134306372 @default.
- W2344474403 hasConceptScore W2344474403C152745839 @default.
- W2344474403 hasConceptScore W2344474403C154945302 @default.
- W2344474403 hasConceptScore W2344474403C158622935 @default.
- W2344474403 hasConceptScore W2344474403C164660894 @default.
- W2344474403 hasConceptScore W2344474403C172707124 @default.
- W2344474403 hasConceptScore W2344474403C195975749 @default.
- W2344474403 hasConceptScore W2344474403C2775924081 @default.