Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344513233> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2344513233 abstract "In this data pervasive world, the efficient and accurate modelling of data is crucial to support reliable analyses and to improve the solution to related problems. In order to describe the given data, the problem of selecting a suitable model has to be carefully addressed. Traditional approaches to the problem of optimal model selection have relied predominantly on the number of model parameters rather than the actual parameters themselves. This limits the ability of traditional methods to correctly distinguish among models that, while being of different type, have the same number of model parameters. In order to address the problem of model selection satisfactorily, this thesis explores the Bayesian information-theoretic principle of minimum message length (MML). The inference framework based on the MML principle enables the optimal selection of models by using the constituent parameters to better balance the trade-off between the model’s complexity and its goodness-of-fit to the data. The core of this thesis explores the MML-based inference of some of the commonly used probability distributions whose parameters have not yet been characterized and of mixtures of these probability distributions. The models of these probability distributions allow for accurate modelling of data in the Euclidean space and data that is directional in nature. These probabilistic models and their mixtures have widespread uses in statistical machine learning tasks. In this context, we have developed a general purpose search method to determine the optimal number of mixture components and their parameters that describe the given data in a completely unsupervised setting. The use of the MML modelling paradigm and our proposed search method is explored in detail on a variety of real-world data, specifically on directional text data and on the spatial orientation data of protein three-dimensional structures. Further, mixtures of directional probability distributions have facilitated the design of reliable computational models for protein structural data. Furthermore, the inference framework has been used for concise representations of protein folding patterns using a combination of non-linear parametric curves. The results of this work have a wide-variety of important uses including direct applications in protein structural biology." @default.
- W2344513233 created "2016-06-24" @default.
- W2344513233 creator A5037254330 @default.
- W2344513233 date "2017-03-02" @default.
- W2344513233 modified "2023-09-25" @default.
- W2344513233 title "Statistical inference problems with applications to computational structural biology" @default.
- W2344513233 doi "https://doi.org/10.4225/03/58b8a74c0f6c5" @default.
- W2344513233 hasPublicationYear "2017" @default.
- W2344513233 type Work @default.
- W2344513233 sameAs 2344513233 @default.
- W2344513233 citedByCount "0" @default.
- W2344513233 crossrefType "dissertation" @default.
- W2344513233 hasAuthorship W2344513233A5037254330 @default.
- W2344513233 hasConcept C105795698 @default.
- W2344513233 hasConcept C107673813 @default.
- W2344513233 hasConcept C114289077 @default.
- W2344513233 hasConcept C119857082 @default.
- W2344513233 hasConcept C124101348 @default.
- W2344513233 hasConcept C134261354 @default.
- W2344513233 hasConcept C149441793 @default.
- W2344513233 hasConcept C151730666 @default.
- W2344513233 hasConcept C154945302 @default.
- W2344513233 hasConcept C160234255 @default.
- W2344513233 hasConcept C2776214188 @default.
- W2344513233 hasConcept C2779343474 @default.
- W2344513233 hasConcept C2779377595 @default.
- W2344513233 hasConcept C33923547 @default.
- W2344513233 hasConcept C41008148 @default.
- W2344513233 hasConcept C81917197 @default.
- W2344513233 hasConcept C86803240 @default.
- W2344513233 hasConcept C93959086 @default.
- W2344513233 hasConceptScore W2344513233C105795698 @default.
- W2344513233 hasConceptScore W2344513233C107673813 @default.
- W2344513233 hasConceptScore W2344513233C114289077 @default.
- W2344513233 hasConceptScore W2344513233C119857082 @default.
- W2344513233 hasConceptScore W2344513233C124101348 @default.
- W2344513233 hasConceptScore W2344513233C134261354 @default.
- W2344513233 hasConceptScore W2344513233C149441793 @default.
- W2344513233 hasConceptScore W2344513233C151730666 @default.
- W2344513233 hasConceptScore W2344513233C154945302 @default.
- W2344513233 hasConceptScore W2344513233C160234255 @default.
- W2344513233 hasConceptScore W2344513233C2776214188 @default.
- W2344513233 hasConceptScore W2344513233C2779343474 @default.
- W2344513233 hasConceptScore W2344513233C2779377595 @default.
- W2344513233 hasConceptScore W2344513233C33923547 @default.
- W2344513233 hasConceptScore W2344513233C41008148 @default.
- W2344513233 hasConceptScore W2344513233C81917197 @default.
- W2344513233 hasConceptScore W2344513233C86803240 @default.
- W2344513233 hasConceptScore W2344513233C93959086 @default.
- W2344513233 hasLocation W23445132331 @default.
- W2344513233 hasOpenAccess W2344513233 @default.
- W2344513233 hasPrimaryLocation W23445132331 @default.
- W2344513233 hasRelatedWork W198604986 @default.
- W2344513233 hasRelatedWork W2030071433 @default.
- W2344513233 hasRelatedWork W2078988289 @default.
- W2344513233 hasRelatedWork W2186866789 @default.
- W2344513233 hasRelatedWork W2226451125 @default.
- W2344513233 hasRelatedWork W2503839997 @default.
- W2344513233 hasRelatedWork W2570953236 @default.
- W2344513233 hasRelatedWork W2806974224 @default.
- W2344513233 hasRelatedWork W2900103833 @default.
- W2344513233 hasRelatedWork W2911375201 @default.
- W2344513233 hasRelatedWork W2965587827 @default.
- W2344513233 hasRelatedWork W2989713382 @default.
- W2344513233 hasRelatedWork W3009474373 @default.
- W2344513233 hasRelatedWork W3046714435 @default.
- W2344513233 hasRelatedWork W3103175042 @default.
- W2344513233 hasRelatedWork W3122797388 @default.
- W2344513233 hasRelatedWork W3130411270 @default.
- W2344513233 hasRelatedWork W54577075 @default.
- W2344513233 hasRelatedWork W1594489743 @default.
- W2344513233 hasRelatedWork W2338238588 @default.
- W2344513233 isParatext "false" @default.
- W2344513233 isRetracted "false" @default.
- W2344513233 magId "2344513233" @default.
- W2344513233 workType "dissertation" @default.