Matches in SemOpenAlex for { <https://semopenalex.org/work/W2344676630> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2344676630 abstract "Many real world phenomena are described through models that include an unobserved process which is usually characterised by a continuous distribution. Such models are widely used in geostatistics where a continuous spatial phenomenon is modelled through an underlying latent Gaussian process. If the observed data are also Gaussian then inference for the underlying process and the model parameters is relatively straightforward. In many applications though the assumption of normally distributed data is not sensible and the assumption of Poisson or binomial data is more suitable. These models, with non-Gaussian data, are known as generalised linear spatial models (GLSM). In such cases, inference requires more sophisticated techniques and a common approach is the use of Markov chain Monte Carlo methods (MCMC). However, the correlation between the components of the latent process and the correlation between the latent process and the model parameters generally hinders the performance of any MCMC scheme which updates the latent process and the parameters sequentially. In this thesis we focus on the Poisson GLSM and elaborate on the problem of the correlation within the latent process. In particular, our aim is to construct an efficient proposal distribution for sampling from the posterior distribution of the latent process conditionally on the other parameters. Initially, we investigate the idea of constructing a global normal approximation to the conditional posterior distribution of the latent process and use it as the proposal distribution in a simple and fast MCMC scheme. For this purpose, we initially employ various transformations of the data and find that some of the constructed schemes perform well in certain low dimensional scenarios. Subsequently, we construct one dimensional proposals for each component of the latent process through an approximation to each univariate marginal posterior conditional on a few principal components. The suggested MCMC scheme updates each component of the process separately and then proceeds by updating the few important principal components. As suggested by our results, this method has a stable and efficient performance in a variety of scenarios and dimensions." @default.
- W2344676630 created "2016-06-24" @default.
- W2344676630 creator A5062500475 @default.
- W2344676630 date "2016-01-01" @default.
- W2344676630 modified "2023-09-27" @default.
- W2344676630 title "Markov chain Monte Carlo methodoloy for inference with generalised linear spatial models" @default.
- W2344676630 hasPublicationYear "2016" @default.
- W2344676630 type Work @default.
- W2344676630 sameAs 2344676630 @default.
- W2344676630 citedByCount "0" @default.
- W2344676630 crossrefType "dissertation" @default.
- W2344676630 hasAuthorship W2344676630A5062500475 @default.
- W2344676630 hasConcept C105795698 @default.
- W2344676630 hasConcept C111350023 @default.
- W2344676630 hasConcept C11413529 @default.
- W2344676630 hasConcept C121332964 @default.
- W2344676630 hasConcept C149782125 @default.
- W2344676630 hasConcept C163716315 @default.
- W2344676630 hasConcept C19499675 @default.
- W2344676630 hasConcept C33923547 @default.
- W2344676630 hasConcept C41008148 @default.
- W2344676630 hasConcept C51167844 @default.
- W2344676630 hasConcept C61326573 @default.
- W2344676630 hasConcept C62520636 @default.
- W2344676630 hasConceptScore W2344676630C105795698 @default.
- W2344676630 hasConceptScore W2344676630C111350023 @default.
- W2344676630 hasConceptScore W2344676630C11413529 @default.
- W2344676630 hasConceptScore W2344676630C121332964 @default.
- W2344676630 hasConceptScore W2344676630C149782125 @default.
- W2344676630 hasConceptScore W2344676630C163716315 @default.
- W2344676630 hasConceptScore W2344676630C19499675 @default.
- W2344676630 hasConceptScore W2344676630C33923547 @default.
- W2344676630 hasConceptScore W2344676630C41008148 @default.
- W2344676630 hasConceptScore W2344676630C51167844 @default.
- W2344676630 hasConceptScore W2344676630C61326573 @default.
- W2344676630 hasConceptScore W2344676630C62520636 @default.
- W2344676630 hasLocation W23446766301 @default.
- W2344676630 hasOpenAccess W2344676630 @default.
- W2344676630 hasPrimaryLocation W23446766301 @default.
- W2344676630 hasRelatedWork W1514627977 @default.
- W2344676630 hasRelatedWork W1903945442 @default.
- W2344676630 hasRelatedWork W2038520798 @default.
- W2344676630 hasRelatedWork W2078051489 @default.
- W2344676630 hasRelatedWork W2103374681 @default.
- W2344676630 hasRelatedWork W2139006986 @default.
- W2344676630 hasRelatedWork W2157404564 @default.
- W2344676630 hasRelatedWork W2181528116 @default.
- W2344676630 hasRelatedWork W2712681089 @default.
- W2344676630 hasRelatedWork W2796180279 @default.
- W2344676630 hasRelatedWork W2808183438 @default.
- W2344676630 hasRelatedWork W2949987155 @default.
- W2344676630 hasRelatedWork W2953359734 @default.
- W2344676630 hasRelatedWork W2990906178 @default.
- W2344676630 hasRelatedWork W3103714082 @default.
- W2344676630 hasRelatedWork W3122326503 @default.
- W2344676630 hasRelatedWork W3124605600 @default.
- W2344676630 hasRelatedWork W3168194744 @default.
- W2344676630 hasRelatedWork W3173757326 @default.
- W2344676630 hasRelatedWork W48075682 @default.
- W2344676630 isParatext "false" @default.
- W2344676630 isRetracted "false" @default.
- W2344676630 magId "2344676630" @default.
- W2344676630 workType "dissertation" @default.